<monospace>Qibosoq</monospace>: an open-source framework for quantum circuit RFSoC programming

被引:0
作者
Carobene, Rodolfo [1 ,2 ,3 ]
Candido, Alessandro [4 ,5 ,6 ]
Serrano, Javier [3 ,7 ]
Orgaz-Fuertes, Alvaro [3 ]
Giachero, Andrea [1 ,2 ,8 ]
Carrazza, Stefano [3 ,4 ,5 ,6 ]
机构
[1] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy
[2] INFN, Sez Milano Bicocca, I-20126 Milan, Italy
[3] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[4] Univ Milan, Dipartimento Fis, TIF Lab, Milan, Italy
[5] INFN Sez Milano, Milan, Italy
[6] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
[7] Univ Autonoma Barcelona, Dept Telecomun & Engn Sistemes, ES-08193 Barcelona, Spain
[8] Bicocca Quantum Technol BiQuTe Ctr, I-20126 Milan, Italy
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2025年 / 10卷 / 03期
基金
欧盟地平线“2020”;
关键词
qubit; superconducting quantum computers; RFSoC; FPGA; open source;
D O I
10.1088/2058-9565/adcd97
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present Qibosoq, an open-source server-side software package designed for radio frequency system on chip (RFSoC) for executing arbitrary pulse sequences and algorithms on self-hosted quantum processing units using only open-source software. Qibosoq connects the RFSoC firmware provided by Qick, a Quantum Instrumentation Control Kit, with Qibo, a quantum computing middleware framework that enables both experimental and gate-based applications. It simplifies the work of experimentalists and developers by managing client-server communication protocols, implementing tests, and validation procedures, thereby reducing the complexity of experimental setups. The client-side integration is achieved with dedicated drivers implemented in Qibolab, the specialized software module of Qibo for quantum hardware control. Therefore, this setup provides a seamless mechanism to deploy circuit-based algorithms on custom self-hosted quantum hardware platforms controlled by RFSoC electronics.
引用
收藏
页数:14
相关论文
共 42 条
[1]  
Anferov A, 2024, Arxiv, DOI arXiv:2306.05883
[2]  
[Anonymous], 2025, Accelerating the advent of the quantum computer | QuantWare
[3]   Intermodulation spectroscopy and the nonlinear response of two-level systems in superconducting coplanar-waveguide resonators [J].
Biznarova, Janka ;
Hernandez, J. C. Rivera ;
Forchheimer, Daniel ;
Bylander, Jonas ;
Haviland, David B. ;
Andersson, Gustav .
PHYSICAL REVIEW APPLIED, 2024, 22 (01)
[4]   Time-Dependent Magnetic Flux in Devices for Circuit Quantum Electrodynamics [J].
Bryon, Jacob ;
Weiss, D. K. ;
You, Xinyuan ;
Sussman, Sara ;
Croot, Xanthe ;
Huang, Ziwen ;
Koch, Jens ;
Houck, Andrew A. .
PHYSICAL REVIEW APPLIED, 2023, 19 (03)
[5]  
Carobene Rodolfo, 2023, Zenodo, DOI 10.5281/ZENODO.8223402
[6]   An open-source modular framework for quantum computing [J].
Carrazza, S. ;
Efthymiou, S. ;
Lazzarin, M. ;
Pasquale, A. .
20TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2023, 2438
[7]  
Efthymiou S., 2022, Quantum, V6, P814, DOI DOI 10.22331/Q-2022-09-22-814
[8]  
Efthymiou S, 2024, Arxiv, DOI arXiv:2308.06313
[9]  
Efthymiou Stavros, 2023, Zenodo, DOI 10.5281/ZENODO.7736837
[10]   Qibo: a framework for quantum simulation with hardware acceleration [J].
Efthymiou, Stavros ;
Ramos-Calderer, Sergi ;
Bravo-Prieto, Carlos ;
Perez-Salinas, Adrian ;
Garcia-Martin, Diego ;
Garcia-Saez, Artur ;
Latorre, Jose Ignacio ;
Carrazza, Stefano .
QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)