Nanotherapeutic platform-mediated cholesterol metabolism regulation for boosting antitumor chemo-immunotherapy

被引:1
作者
Zhou, Hao [1 ,2 ]
He, Hao-Ze [1 ,2 ]
Li, Qian-Ru [1 ,2 ]
Zhang, Xiao-Yang [1 ,2 ]
Liu, Chang-Jiang [1 ,2 ]
Hu, Xu-Qi [1 ,2 ]
Chen, Zhu [1 ,2 ]
Chen, Wei-Hai [1 ,2 ]
Zhang, Xian-Zheng [1 ,2 ]
机构
[1] Wuhan Univ, Key Lab Biomed Polymers, Minist Educ, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Zhongnan Hosp, Dept Chem, Dept Cardiol, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
metabolism regulation; tumor-targeting; tumor microenvironment; immunogenic cell death; chemo-immunotherapy;
D O I
10.1007/s40843-025-3348-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chemotherapy, as one of the most commonly used treatments for tumors, has been confirmed to induce immunogenic cell death (ICD) of tumor cells, which could activate a robust antitumor immune response. However, the elevated cholesterol level in the tumor microenvironment (TME) promotes the activation and proliferation of myeloid-derived suppressor cells (MDSCs), which would inhibit the antitumor effect, thereby reducing the therapeutic performance of chemo-immunotherapy. Here, a poly(lactide-co-glycolide acid) (PLGA)-based nanotherapeutic platform (COD/MTO@PLGA@FA) is rationally designed by co-loading mitoxantrone (MTO) and cholesterol oxidase (COD) for boosting chemo-immunotherapy. Specifically, the designed COD/MTO@PLGA@FA would respond to the acidic TME to rapidly release MTO and COD, respectively. Thus, the free MTO could kill tumor cells directly and induce potent ICD, thereby activating the antitumor immune response. Meanwhile, the released COD could downregulate the expression of PD-1 on tumor-infiltrating CD8(+) T cells by consuming cholesterol in TME, thereby reversing the exhausted state of tumor-infiltrating CD8(+) T cells. Particularly, the reduction of cholesterol levels in TME would also inhibit the activation of MDSCs, further remodeling the immunosuppressive TME. In combination with anti-programmed death-ligand 1 antibody (alpha PD-L1), COD/MTO@PLGA@FA could significantly inhibit the growth of tumors, providing a practical strategy to enhance chemotherapy and highlighting new opportunities for chemo-immunotherapy.
引用
收藏
页码:2101 / 2110
页数:10
相关论文
共 34 条
[1]   Cholesterol Depletion-Enhanced Ferroptosis and Immunotherapy via Engineered Nanozyme [J].
Bai, Tingjie ;
Xue, Panpan ;
Shao, Sijie ;
Yan, Shuangqian ;
Zeng, Xuemei .
ADVANCED SCIENCE, 2024, 11 (38)
[2]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[3]   Carrier-adjuvanted immunostimulator to boost photodynamic immunotherapy by downregulating PD-L1 and impairing ATP hydrolysis [J].
Cen, Yi ;
Chen, Ying ;
Cai, Hua ;
Li, Xinxuan ;
Chen, Xiayun ;
Liu, Qianqian ;
Yu, Baixue ;
Liu, Yibin ;
Wang, Tao ;
Li, Shiying .
SCIENCE CHINA-MATERIALS, 2025, 68 (02) :626-639
[4]   Biomedical polymers: synthesis, properties, and applications [J].
Chen, Wei-Hai ;
Chen, Qi-Wen ;
Chen, Qian ;
Cui, Chunyan ;
Duan, Shun ;
Kang, Yongyuan ;
Liu, Yang ;
Liu, Yun ;
Muhammad, Wali ;
Shao, Shiqun ;
Tang, Chengqiang ;
Wang, Jinqiang ;
Wang, Lei ;
Xiong, Meng-Hua ;
Yin, Lichen ;
Zhang, Kuo ;
Zhang, Zhanzhan ;
Zhen, Xu ;
Feng, Jun ;
Gao, Changyou ;
Gu, Zhen ;
He, Chaoliang ;
Ji, Jian ;
Jiang, Xiqun ;
Liu, Wenguang ;
Liu, Zhuang ;
Peng, Huisheng ;
Shen, Youqing ;
Shi, Linqi ;
Sun, Xuemei ;
Wang, Hao ;
Wang, Jun ;
Xiao, Haihua ;
Xu, Fu-Jian ;
Zhong, Zhiyuan ;
Zhang, Xian-Zheng ;
Chen, Xuesi .
SCIENCE CHINA-CHEMISTRY, 2022, 65 (06) :1010-1075
[5]   Clinical implications of T cell exhaustion for cancer immunotherapy [J].
Chow, Andrew ;
Perica, Karlo ;
Klebanoff, Christopher A. ;
Wolchok, Jedd D. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (12) :775-790
[6]   Tumor microenvironment-responsive Ag2S-PAsp(DOX)-cRGD nanoparticles-mediated photochemotherapy enhances the immune response to tumor therapy [J].
Han, Ruxia ;
Liu, Qingya ;
Lu, Yi ;
Peng, Jinrong ;
Pan, Meng ;
Wang, GuiHua ;
Chen, Wen ;
Xiao, Yao ;
Yang, ChengLi ;
Qian, Zhiyong .
BIOMATERIALS, 2022, 281
[7]   Gut Microbial Glucuronidase-responsive Glycyrrhizin Micelles for Enhanced Colon Cancer Chemotherapy [J].
Han, Zi-yi ;
Bai, Xue-feng ;
Wang, Yu-zhang ;
Chen, Qi-wen ;
Zhang, Xian-zheng .
ACTA POLYMERICA SINICA, 2022, 53 (06) :626-635
[8]   Synergistic Reinforcing of Immunogenic Cell Death and Transforming Tumor-Associated Macrophages Via a Multifunctional Cascade Bioreactor for Optimizing Cancer Immunotherapy [J].
Huang, Cong ;
Lin, Bingquan ;
Chen, Chuyao ;
Wang, Huaiming ;
Lin, Xiaosheng ;
Liu, Jiamin ;
Ren, Qingfan ;
Tao, Jia ;
Zhao, Peng ;
Xu, Yikai .
ADVANCED MATERIALS, 2022, 34 (51)
[9]   Pegylated liposomal mitoxantrone modulates tumor immune landscape to boost PD-L1 blockade therapy [J].
Huang, Mengwen ;
Wang, Songrong ;
Chen, Senbiao ;
Wang, Jilong ;
Xu, Congfei ;
Liu, Jing ;
Lian, Zhexiong ;
Du, Xiaojiao ;
Wang, Jun .
NANO TODAY, 2022, 44
[10]   A Lipid Targeting, pH-Responsive Nanoemulsion Encapsulating a DNA Intercalating Agent and HDAC Inhibitor Reduces TNBC Tumor Burden [J].
Kim, Bumjun ;
Hebert, Jacob M. ;
Liu, Daxing ;
Auguste, Debra T. .
ADVANCED THERAPEUTICS, 2021, 4 (03)