Evaluating the Performance of Agreement Metrics in a Delphi Study on Chemical, Biological, Radiological and Nuclear Major Incidents Preparedness Using Classical and Machine Learning Approaches

被引:0
作者
Farhat, Hassan [1 ,2 ]
Batt, Alan M. [3 ,4 ]
Helou, Mariana [5 ,6 ]
Shin, Heejun [7 ,8 ,9 ,10 ]
Laughton, James [2 ]
Dumbeck, Carolyn [11 ]
Dehghani, Arezoo [12 ,13 ]
Rezaei, Fatemeh [13 ]
Bajow, Nidaa [14 ]
Mortelmans, Luc [15 ,16 ,17 ]
Abougalala, Walid [18 ]
Mugavero, Roberto [19 ,20 ,21 ]
Ciottone, Gregory [10 ,22 ]
Alinier, Guillaume [2 ,23 ,24 ,25 ]
Dhiab, Mohamed Ben [1 ]
机构
[1] Univ Sousse, Fac Med Ibn Jazzar, Sousse, Tunisia
[2] Hamad Med Corp, Ambulance Serv, Doha, Qatar
[3] Queens Univ, Kingston, ON, Canada
[4] Monash Univ, Melbourne, Vic, Australia
[5] Lebanese Amer Univ, Sch Med, Beirut, Lebanon
[6] Lebanese Amer Univ, Rizk Hosp, Beirut, Lebanon
[7] Soonchunhyang Disaster Med Ctr, Bucheon, South Korea
[8] Soonchunhyang Univ, Bucheon Hosp, Bucheon, South Korea
[9] Shins Disaster Med Acad, Seoul, South Korea
[10] Harvard Univ, Harvard Med Sch, Cambridge, MA USA
[11] Alberta Hlth Serv, Dept Disaster Management, Edmonton, AB, Canada
[12] Shahid Beheshti Univ Med Sci, Safety Promot & Injury Prevent Res Ctr, Tehran, Iran
[13] Isfahan Univ Med Sci, Hlth Management & Econ Res Ctr, Dept Hlth Emergencies & Disasters, Esfahan, Iran
[14] Secur Forces Hosp, Riyadh, Saudi Arabia
[15] European Soc Emergency Med, Antwerp, Belgium
[16] Katholieke Univ Leuven, Leuven, Belgium
[17] Free Univ Brussels, Brussels, Belgium
[18] Hamad Med Corp, Doha, Qatar
[19] Univ Roma Tor Vergata, Dept Elect Engn DIE, Rome, Italy
[20] Univ Republ San Marino, Ctr Secur Studies CUFS, San Marino, Italy
[21] Observ Secur & CBRNe Def OSDIFE, Rome, Italy
[22] Harvard TH Chan Sch Publ Hlth, Boston, MA USA
[23] Univ Herts, Sch Hlth & Social Work, Hatfield, England
[24] Weill Cornell Med Qatar, Doha, Qatar
[25] Northumbria Univ, Fac Hlth & Life Sci, Newcastle Upon Tyne, England
关键词
agreement analysis; Delphi study; disaster medicine; expert's opinion; MENA; REPORTING GUIDELINES;
D O I
10.1111/1468-5973.70044
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Delphi studies in disaster medicine lack consensus on expert agreement metrics. This study examined various metrics using a Delphi study on chemical, biological, radiological, and nuclear (CBRN) preparedness in the Middle East and North Africa region. Forty international disaster medicine experts evaluated 133 items across ten CBRN Preparedness Assessment Tool themes using a 5-point Likert scale. Agreement was measured using Kendall's W, Intraclass Correlation Coefficient, and Cohen's Kappa. Statistical and machine learning techniques compared metric performance. The overall agreement mean score was 4.91 +/- 0.71, with 89.21% average agreement. Kappa emerged as the most sensitive metric in statistical and machine learning analyses, with a feature importance score of 168.32. The Kappa coefficient showed variations across CBRN PAT themes, including medical protocols, logistics, and infrastructure. The integrated statistical and machine learning approach provides a promising method for understanding expert consensus in disaster preparedness, with potential for future refinement by incorporating additional contextual factors.
引用
收藏
页数:20
相关论文
共 36 条
[1]   Alzheimer's disease: a review on the current trends of the effective diagnosis and therapeutics [J].
Abdul Manap, Aimi Syamima ;
Almadodi, Reema ;
Sultana, Shirin ;
Sebastian, Maheishinii Grace ;
Kavani, Kenil Sureshbhai ;
Lyenouq, Vanessa Elle ;
Shankar, Aravind .
FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
[2]   How to Decide the Proportion of Online to Face-to-Face Components of a Blended Course? A Delphi Study [J].
Alammary, Ali Saleh .
SAGE OPEN, 2022, 12 (04)
[3]   The majority of reporting guidelines are not developed with the Delphi method: a systematic review of reporting guidelines [J].
Banno, Masahiro ;
Tsujimoto, Yasushi ;
Kataoka, Yuki .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2020, 124 :50-57
[4]  
Denham B.E., 2016, Categorical statistics for communication research
[5]   Deep-learning based detection of COVID-19 using lung ultrasound imagery [J].
Diaz-Escobar, Julia ;
Ordonez-Guillen, Nelson E. ;
Villarreal-Reyes, Salvador ;
Galaviz-Mosqueda, Alejandro ;
Kober, Vitaly ;
Rivera-Rodriguez, Raul ;
Rizk, Jose E. Lozano .
PLOS ONE, 2021, 16 (08)
[6]  
Dinar H. A., 2023, Africa (MENA) Countries: A Delphi Study (SSRN Scholarly), V1, DOI [10.2139/ssrn.4467661, DOI 10.2139/SSRN.4467661]
[7]   'More of an art than a science'? The development, design and mechanics of the Delphi Technique [J].
Drumm, Sarah ;
Bradley, Catriona ;
Moriarty, Frank .
RESEARCH IN SOCIAL & ADMINISTRATIVE PHARMACY, 2022, 18 (01) :2230-2236
[8]   Preparedness and Response Strategies for Chemical, Biological, Radiological, and Nuclear Incidents in the Middle East and North Africa: An Artificial Intelligence-Enhanced Delphi Approach [J].
Farhat, Hassan ;
Alinier, Guillaume ;
Bajow, Nidaa ;
Batt, Alan ;
Helou, Mariana Charbel ;
Campbell, Craig ;
Shin, Heejun ;
Mortelmans, Luc ;
Dehghani, Arezoo ;
Dumbeck, Carolyn ;
Mugavero, Roberto ;
Abougalala, Walid ;
Zelfani, Saida ;
Laughton, James ;
Ciottone, Gregory ;
Dhiab, Mohamed Ben .
DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS, 2024, 18
[9]   Predictive modelling of transport decisions and resources optimisation in pre-hospital setting using machine learning techniques [J].
Farhat, Hassan ;
Makhlouf, Ahmed ;
Gangaram, Padarath ;
El Aifa, Kawther ;
Howland, Ian ;
Rekik, Fatma Babay Ep ;
Abid, Cyrine ;
Khenissi, Mohamed Chaker ;
Castle, Nicholas ;
Al-Shaikh, Loua ;
Khadhraoui, Moncef ;
Gargouri, Imed ;
Laughton, James ;
Alinier, Guillaume .
PLOS ONE, 2024, 19 (05)
[10]  
Franc J M., 2023, Methodol Innov, V16, P226, DOI DOI 10.1177/20597991231179393