A High-Accuracy and Ultra-Energy-Efficient Cardiac Arrhythmia Classification Processor for Wearable Intelligent ECG Monitoring

被引:0
作者
Liu, Jiahao [1 ]
Xie, Ziyi [1 ]
Liu, Xiao [1 ]
Wang, Xu [1 ]
Xiao, Jianbiao [1 ]
Guo, Chaozheng [1 ]
Fan, Jiajing [1 ]
Liu, Qingsong [1 ]
Zhu, Zhen [1 ]
Li, Sixu [1 ]
Zhang, Zhaomin [1 ]
Yang, Siqi [1 ]
Shan, Weiwei [2 ]
Lin, Shuisheng [1 ]
Zhou, Liang [1 ]
Chang, Liang [1 ]
Liu, Shanshan [1 ]
Zhou, Jun [1 ]
机构
[1] Univ Elect Sci & Technol China UESTC, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Southeast Univ, Sch Elect Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
respectively. Index Terms- Arrhythmia classification; Arrhythmia classification; electrocardiography (ECG); energy efficient; inter-patient variation; NEURAL-NETWORK; SYSTEM; SOC;
D O I
10.1109/JSSC.2025.3555512
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wearable intelligent electrocardiography (ECG) sensors with integrated cardiac arrhythmia classification processors have been used to detect and classify arrhythmia, alerting users to potential cardiac diseases. While state-of-the-art arrhythmia classification processors employ neural networks (NNs), the high computational complexity of NNs results in significant energy consumption, limiting the model size and classification performance of NNs. Additionally, inter-patient variation in ECG can lead to accuracy degradation when applying a trained NN to patients whose ECG features differ from those in the training dataset. In this work, we propose an ultra-energy-efficient cardiac arrhythmia classification processor incorporating three key technologies: 1) heartbeat difference-based classification to improve accuracy under inter-patient variation and reduce energy consumption; 2) event-driven NN computation with shared feature extraction to reduce energy consumption; and 3) an adaptive NN wake-up technique to reduce energy consumption while maintaining accuracy. The design was fabricated using 55-nm CMOS process technology and evaluated using the MIT-BIH arrhythmia dataset. For arrhythmia classification, it demonstrates an energy consumption of 0.09 mu J per classification with 98.7%/96.6% accuracy for intra-patient and inter-patient testing, respectively.
引用
收藏
页数:17
相关论文
共 40 条
[21]   Kunlun: A 14nm High-Performance AI Processor for Diversified Workloads [J].
Ouyang, Jian ;
Du, Xueliang ;
Ma, Yin ;
Liu, Jiagiang .
2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 :50-51
[22]   A REAL-TIME QRS DETECTION ALGORITHM [J].
PAN, J ;
TOMPKINS, WJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1985, 32 (03) :230-236
[23]  
Saeed M., 2022, P IEEE BIOM CIRC SYS, P595
[24]   An ECG Delineation and Arrhythmia Classification System Using Slope Variation Measurement by Ternary Second-Order Delta Modulators for Wearable ECG Sensors [J].
Tang, Xiaochen ;
Tang, Wei .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2021, 15 (05) :1053-1065
[25]   A Real-Time Arrhythmia Heartbeats Classification Algorithm Using Parallel Delta Modulations and Rotated Linear-Kernel Support Vector Machines [J].
Tang, Xiaochen ;
Ma, Ziwei ;
Hu, Qisong ;
Tang, Wei .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (04) :978-986
[26]   Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association [J].
Tsao, Connie W. ;
Aday, Aaron W. ;
Almarzooq, Zaid I. ;
Alonso, Alvaro ;
Beaton, Andrea Z. ;
Bittencourt, Marcio S. ;
Boehme, Amelia K. ;
Buxton, Alfred E. ;
Carson, April P. ;
Commodore-Mensah, Yvonne ;
Elkind, Mitchell S. V. ;
Evenson, Kelly R. ;
Eze-Nliam, Chete ;
Ferguson, Jane F. ;
Generoso, Giuliano ;
Ho, Jennifer E. ;
Kalani, Rizwan ;
Khan, Sadiya S. ;
Kissela, Brett M. ;
Knutson, Kristen L. ;
Levine, Deborah A. ;
Lewis, Tene T. ;
Liu, Junxiu ;
Loop, Matthew Shane ;
Ma, Jun ;
Mussolino, Michael E. ;
Navaneethan, Sankar D. ;
Perak, Amanda Marma ;
Poudel, Remy ;
Rezk-Hanna, Mary ;
Roth, Gregory A. ;
Schroeder, Emily B. ;
Shah, Svati H. ;
Thacker, Evan L. ;
VanWagner, Lisa B. ;
Virani, Salim S. ;
Voecks, Jenifer H. ;
Wang, Nae-Yuh ;
Yaffe, Kristine ;
Martin, Seth S. .
CIRCULATION, 2022, 145 (08) :E153-E639
[27]   A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System [J].
Verma, Naveen ;
Shoeb, Ali ;
Bohorquez, Jose ;
Dawson, Joel ;
Guttag, John ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (04) :804-816
[28]   Energy-Efficient Intelligent ECG Monitoring for Wearable Devices [J].
Wang, Ning ;
Zhou, Jun ;
Dai, Guanghai ;
Huang, Jiahui ;
Xie, Yuxiang .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (05) :1112-1121
[29]   Deep Multi-Scale Fusion Neural Network for Multi-Class Arrhythmia Detection [J].
Wang, Ruxin ;
Fan, Jianping ;
Li, Ye .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (09) :2461-2472
[30]   Interpatient Heartbeat Classification Using Modified Residual Attention Network With Two-Phase Training and Assistant Decision [J].
Wang, Ya'nan ;
Zhou, Guohui ;
Yang, Cuiwei .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72