perfDSA: Automatic Perfusion Imaging in Cerebral Digital Subtraction Angiography

被引:0
作者
Su, Ruisheng [1 ,2 ]
van der Sluijs, P. Matthijs [2 ]
Marc, Flavius-Gabriel [1 ]
te Nijenhuis, Frank [2 ]
Cornelissen, Sandra A. P. [2 ]
Roozenbeek, Bob [2 ]
van Zwam, Wim H. [3 ]
van der Lugt, Aad [2 ]
Ruijters, Danny [4 ]
Pluim, Josien [1 ]
van Walsum, Theo [2 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, Erasmus MC, Rotterdam, Netherlands
[3] Maastricht Univ, Dept Radiol & Nucl Med, Med Ctr, Maastricht, Netherlands
[4] Philips Healthcare, Intervent Xray IXR, Best, Netherlands
关键词
Digital subtraction angiography; Deep learning; Vessel segmentation; Cerebral blood flow; Perfusion; Cerebrovascular disease; ACUTE ISCHEMIC-STROKE; CT;
D O I
10.1007/s11548-025-03359-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeCerebral digital subtraction angiography (DSA) is a standard imaging technique in image-guided interventions for visualizing cerebral blood flow and therapeutic guidance thanks to its high spatio-temporal resolution. To date, cerebral perfusion characteristics in DSA are primarily assessed visually by interventionists, which is time-consuming, error-prone, and subjective. To facilitate fast and reproducible assessment of cerebral perfusion, this work aims to develop and validate a fully automatic and quantitative framework for perfusion DSA.MethodsWe put forward a framework, perfDSA, that automatically generates deconvolution-based perfusion parametric images from cerebral DSA. It automatically extracts the arterial input function from the supraclinoid internal carotid artery (ICA) and computes deconvolution-based perfusion parametric images including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and Tmax.ResultsOn a DSA dataset with 1006 patients from the multicenter MR CLEAN registry, the proposed perfDSA achieves a Dice of 0.73(+/- 0.21) in segmenting the supraclinoid ICA, resulting in high accuracy of arterial input function (AIF) curves similar to manual extraction. Moreover, some extracted perfusion images show statistically significant associations (P=2.62e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}5) with favorable functional outcomes in stroke patients.ConclusionThe proposed perfDSA framework promises to aid therapeutic decision-making in cerebrovascular interventions and facilitate discoveries of novel quantitative biomarkers in clinical practice. The code is available at https://github.com/RuishengSu/perfDSA.
引用
收藏
页码:1195 / 1203
页数:9
相关论文
共 32 条
[1]   Color-Coded Digital Subtraction Angiography: The End of a Monochromatic Era? [J].
Benndorf, G. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2010, 31 (05) :925-927
[2]   Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements [J].
Brix, Gunnar ;
Griebel, Juergen ;
Kiessling, Fabian ;
Wenz, Frederik .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 :S30-S51
[3]   Measuring cerebral blood flow using magnetic resonance imaging techniques [J].
Calamante, F ;
Thomas, DL ;
Pell, GS ;
Wiersma, J ;
Turner, R .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1999, 19 (07) :701-735
[5]   Quantitative Assessment of Neovascularization after Indirect Bypass Surgery: Color-Coded Digital Subtraction Angiography in Pediatric Moyamoya Disease [J].
Cho, H. -H. ;
Cheon, J. -E. ;
Kim, S. -K. ;
Choi, Y. H. ;
Kim, I. -O. ;
Kim, W. S. ;
Lee, S. -M. ;
You, S. K. ;
Shin, S. -M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2016, 37 (05) :932-938
[6]   Reproducibility and Optimal Arterial Input Function Selection in Dynamic Contrast-Enhanced Perfusion MRI in the Healthy Brain [J].
Cramer, Stig P. ;
Larsson, Henrik B. W. ;
Knudsen, Maria H. ;
Simonsen, Helle J. ;
Vestergaard, Mark B. ;
Lindberg, Ulrich .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (04) :1229-1240
[7]   Deconvolution-Based CT and MR Brain Perfusion Measurement: Theoretical Model Revisited and Practical Implementation Details [J].
Fieselmann, Andreas ;
Kowarschik, Markus ;
Ganguly, Arundhuti ;
Hornegger, Joachim ;
Fahrig, Rebecca .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2011, 2011
[8]  
Furlan A J, 1983, Neurol Clin, V1, P55
[9]  
Heckel F, 2009, INFORMATIK 2009 IM F
[10]   Cerebral perfusion CT: Technique and clinical applications [J].
Hoeffner, EG ;
Case, I ;
Jain, R ;
Gujar, SK ;
Shah, GV ;
Deveikis, JP ;
Carlos, RC ;
Thompson, BG ;
Harrigan, MR ;
Mukherji, SK .
RADIOLOGY, 2004, 231 (03) :632-644