perfDSA: Automatic Perfusion Imaging in Cerebral Digital Subtraction Angiography

被引:0
|
作者
Su, Ruisheng [1 ,2 ]
van der Sluijs, P. Matthijs [2 ]
Marc, Flavius-Gabriel [1 ]
te Nijenhuis, Frank [2 ]
Cornelissen, Sandra A. P. [2 ]
Roozenbeek, Bob [2 ]
van Zwam, Wim H. [3 ]
van der Lugt, Aad [2 ]
Ruijters, Danny [4 ]
Pluim, Josien [1 ]
van Walsum, Theo [2 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, Erasmus MC, Rotterdam, Netherlands
[3] Maastricht Univ, Dept Radiol & Nucl Med, Med Ctr, Maastricht, Netherlands
[4] Philips Healthcare, Intervent Xray IXR, Best, Netherlands
关键词
Digital subtraction angiography; Deep learning; Vessel segmentation; Cerebral blood flow; Perfusion; Cerebrovascular disease; ACUTE ISCHEMIC-STROKE; CT;
D O I
10.1007/s11548-025-03359-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeCerebral digital subtraction angiography (DSA) is a standard imaging technique in image-guided interventions for visualizing cerebral blood flow and therapeutic guidance thanks to its high spatio-temporal resolution. To date, cerebral perfusion characteristics in DSA are primarily assessed visually by interventionists, which is time-consuming, error-prone, and subjective. To facilitate fast and reproducible assessment of cerebral perfusion, this work aims to develop and validate a fully automatic and quantitative framework for perfusion DSA.MethodsWe put forward a framework, perfDSA, that automatically generates deconvolution-based perfusion parametric images from cerebral DSA. It automatically extracts the arterial input function from the supraclinoid internal carotid artery (ICA) and computes deconvolution-based perfusion parametric images including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and Tmax.ResultsOn a DSA dataset with 1006 patients from the multicenter MR CLEAN registry, the proposed perfDSA achieves a Dice of 0.73(+/- 0.21) in segmenting the supraclinoid ICA, resulting in high accuracy of arterial input function (AIF) curves similar to manual extraction. Moreover, some extracted perfusion images show statistically significant associations (P=2.62e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}5) with favorable functional outcomes in stroke patients.ConclusionThe proposed perfDSA framework promises to aid therapeutic decision-making in cerebrovascular interventions and facilitate discoveries of novel quantitative biomarkers in clinical practice. The code is available at https://github.com/RuishengSu/perfDSA.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Towards quantitative digital subtraction perfusion angiography: An animal study
    Su, Ruisheng
    van der Sluijs, P. Matthijs
    Bobi, Joaquim
    Taha, Aladdin
    van Beusekom, Heleen M. M.
    van der Lugt, Aad
    Niessen, Wiro J.
    Ruijters, Danny
    van Walsum, Theo
    MEDICAL PHYSICS, 2023, 50 (07) : 4055 - 4066
  • [2] Tomographic digital subtraction angiography for lung perfusion estimation in rodents
    Badea, Cristian T.
    Hedlund, Laurence W.
    Lin, Ming De
    Mackel, Julie S. Boslego
    Samei, Ehsan
    Johnson, G. Allan
    MEDICAL PHYSICS, 2007, 34 (05) : 1546 - 1555
  • [3] DETERMINATION OF MYOCARDIAL PERFUSION BY MEANS OF DIGITAL SUBTRACTION ANGIOGRAPHY
    JEHLE, J
    SCHMIEL, FK
    SPILLER, P
    HAUDE, M
    MACHNIG, T
    POLITZ, B
    HERZ KREISLAUF, 1991, 23 (02): : 41 - 45
  • [4] CAVE: Cerebral artery-vein segmentation in digital subtraction angiography
    Su, Ruisheng
    van der Sluijs, P. Matthijs
    Chen, Yuan
    Cornelissen, Sandra
    van den Broek, Ruben
    van Zwam, Wim H.
    van der Lugt, Aad
    Niessen, Wiro J.
    Ruijters, Danny
    van Walsum, Theo
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2024, 115
  • [5] Automated image registration of cerebral digital subtraction angiography
    Hellebrekers, Vincent J. W.
    van Walsum, Theo
    Smal, Ihor
    Cornelissen, Sandra A. P.
    van Zwam, Wim H.
    Van der Lugt, Aad
    Van der Sluijs, Matthijs
    Su, Ruisheng
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2024, 19 (01) : 147 - 150
  • [6] Evaluating cerebral hemodynamics using quantitative digital subtraction angiography and flat-detector computed tomography perfusion imaging: A comparative study in patients with carotid stenosis
    Chen, Liang-Wei
    Lin, Chung-Jung
    Guo, Wan-Yuo
    Hung, Sheng-Che
    Lee, Han-Jui
    Chen, Ko-Kung
    Chang, Feng-Chi
    Luo, Chao-Bao
    Chu, Wei-Fa
    JOURNAL OF THE CHINESE MEDICAL ASSOCIATION, 2018, 81 (11) : 977 - 984
  • [7] Automated image registration of cerebral digital subtraction angiography
    Vincent J. W. Hellebrekers
    Theo van Walsum
    Ihor Smal
    Sandra A. P. Cornelissen
    Wim H. van Zwam
    Aad van der Lugt
    Matthijs van der Sluijs
    Ruisheng Su
    International Journal of Computer Assisted Radiology and Surgery, 2024, 19 : 147 - 150
  • [8] Parametric Digital Subtraction Angiography Imaging for the Objective Grading of Collateral Flow in Acute Middle Cerebral Artery Occlusion
    Wen, Wan-ling
    Fang, Yi-bin
    Yang, Peng-fei
    Zhang, Yong-wei
    Wu, Yi-na
    Shen, Hui
    Ge, Jia-jia
    Xu, Yi
    Hong, Bo
    Huang, Qing-hai
    Liu, Jian-min
    WORLD NEUROSURGERY, 2016, 88 : 119 - 125
  • [9] Cortical Venous Changes on Susceptibility-Weighted Imaging Predict the Cerebral Collateral Circulation as Confirmed by Digital Subtraction Angiography
    Zhan, Yun-Hao
    Chen, Yang-Kun
    Li, Run-Xiong
    Luo, Gen-Pei
    Wu, Zhi-Qiang
    Liu, Yong-Lin
    Xiao, Wei-Min
    Hu, Wei-Dong
    Xie, Cai-Qin
    FRONTIERS IN NEUROLOGY, 2021, 12
  • [10] Utility of Screening for Cerebral Vasospasm Using Digital Subtraction Angiography
    Arias, Eric J.
    Vajapey, Sravya
    Reynolds, Matthew R.
    Chicoine, Michael R.
    Rich, Keith M.
    Dacey, Ralph G., Jr.
    Dorward, Ian G.
    Derdeyn, Colin P.
    Moran, Christopher J.
    Cross, DeWitte T., III
    Zipfel, Gregory J.
    Dhar, Rajat
    STROKE, 2015, 46 (11) : 3137 - 3141