A sparse Bayesian Committee Machine potential for oxygen-containing organic compounds

被引:0
作者
Willow, Soohaeng Yoo [1 ]
Kim, Seungwon [1 ,2 ]
Yang, D. ChangMo [1 ]
Ha, Miran [3 ,6 ]
Hajibabaei, Amir [3 ,4 ]
Yang, Jung Woon [1 ,5 ]
Kim, Kwang S. [3 ]
Myung, Chang Woo [1 ,2 ,5 ]
机构
[1] Sungkyunkwan Univ, Dept Energy Sci, Seobu Ro 2066, Suwon 16419, South Korea
[2] Inst Basic Sci IBS, Ctr 2D Quantum Heterostruct, Suwon 16419, South Korea
[3] Ulsan Natl Inst Sci & Technol, Dept Chem, 50 UNIST Gil, Ulsan 44919, South Korea
[4] Univ Cambridge, Yusuf Hamied Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
[5] Sungkyunkwan Univ, Dept Energy, Seobu Ro 2066, Suwon 16419, South Korea
[6] Samsung SDI Co Ltd, 150-20 Gongse Ro, Yongin 17084, Gyeonggi Do, South Korea
来源
CHEMICAL PHYSICS REVIEWS | 2025年 / 6卷 / 02期
基金
新加坡国家研究基金会;
关键词
TOTAL-ENERGY CALCULATIONS; FORCE-FIELD; MOLECULAR-DYNAMICS; GAUSSIAN PROCESS; BENZENE DIMER; CHEMISTRY; EFFICIENT; ACCURACY; CLUSTERS; ORIGIN;
D O I
10.1063/5.0261943
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate and scalable interatomic potentials are essential for understanding material properties at the atomic level; however, steep computational demands often limit their application. Although recent advances in machine learning (ML) potentials have been significant, extending kernel-based models to accommodate a broad range of chemical compositions remains a major challenge. Here, we present the active robust Bayesian Committee Machine (RBCM) potential, specifically designed to handle extensive datasets encompassing hydrocarbons (in gas, cluster, liquid, and solid phases) and eight families of oxygen-containing organic compounds. By employing a committee-based approach, the RBCM circumvents the poor scaling inherent to kernel regressors, facilitating straightforward and cost-effective model expansion. Systematic benchmarking demonstrates its robustness in accurately describing complex processes such as the Diels-Alder reaction, structural strain effects, and pi-pi interactions. These results highlight the RBCM's potential as a powerful tool for developing universal, ab initio-level ML potentials that offer both transferability and scalability across diverse chemical systems.
引用
收藏
页数:12
相关论文
共 76 条
[21]   Machine Learning of First-Principles Force-Fields for Alkane and Polyene Hydrocarbons [J].
Hajibabaei, Amir ;
Ha, Miran ;
Pourasad, Saeed ;
Kim, Junu ;
Kim, Kwang S. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (42) :9414-9420
[22]   Universal Machine Learning Interatomic Potentials: Surveying Solid Electrolytes [J].
Hajibabaei, Amir ;
Kim, Kwang S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (33) :8115-8120
[23]   Sparse Gaussian process potentials: Application to lithium diffusivity in superionic conducting solid electrolytes [J].
Hajibabaei, Amir ;
Myung, Chang Woo ;
Kim, Kwang S. .
PHYSICAL REVIEW B, 2021, 103 (21)
[24]   Reducing training data needs with minimal multilevel machine learning (M3L) [J].
Heinen, Stefan ;
Khan, Danish ;
Falk von Rudorff, Guido ;
Karandashev, Konstantin ;
Arrieta, Daniel Jose Arismendi ;
Price, Alastair J. A. ;
Nandi, Surajit ;
Bhowmik, Arghya ;
Hermansson, Kersti ;
von Lilienfeld, O. Anatole .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02)
[25]   Training products of experts by minimizing contrastive divergence [J].
Hinton, GE .
NEURAL COMPUTATION, 2002, 14 (08) :1771-1800
[26]   Cross-Domain Adversarial Autoencoder for Fine Grained Category Preserving Image Translation [J].
Hou, Haodi ;
Hu, Jing ;
Gao, Yang .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[27]   Puckering transitions in cyclohexane: Revisited [J].
Kang, Young Kee ;
Park, Hae Sook .
CHEMICAL PHYSICS LETTERS, 2018, 702 :82-89
[28]   Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems [J].
Keith, John A. ;
Vassilev-Galindo, Valentin ;
Cheng, Bingqing ;
Chmiela, Stefan ;
Gastegger, Michael ;
Mueller, Klaus-Robert ;
Tkatchenko, Alexandre .
CHEMICAL REVIEWS, 2021, 121 (16) :9816-9872
[29]   Predicting melting temperature of inorganic crystals via crystal graph neural network enhanced by transfer learning [J].
Kim, Jaesun ;
Jung, Jisu ;
Kim, Sookyung ;
Han, Seungwu .
COMPUTATIONAL MATERIALS SCIENCE, 2024, 234
[30]   Molecular clusters of π-systems:: Theoretical studies of structures, spectra, and origin of interaction energies [J].
Kim, KS ;
Tarakeshwar, P ;
Lee, JY .
CHEMICAL REVIEWS, 2000, 100 (11) :4145-4185