Insights into Autophagy in Microbiome Therapeutic Approaches for Drug-Resistant Tuberculosis

被引:0
作者
Rahim, Md Abdur [1 ,2 ]
Seo, Hoonhee [2 ,3 ]
Barman, Indrajeet [1 ,2 ]
Hossain, Mohammed Solayman [1 ,2 ]
Shuvo, Md Sarower Hossen [1 ,2 ]
Song, Ho-Yeon [1 ,2 ,3 ]
机构
[1] Soonchunhyang Univ, Sch Med, Dept Microbiol & Immunol, 31 Suncheonhyang 6 Gil, Cheonan Si 31151, South Korea
[2] Soonchunhyang Univ, Sch Med, Human Microbiome Med Res Ctr HM MRC, 22 Soonchunhyang Ro, Asan 31538, South Korea
[3] Soonchunhyang Univ, Probiot Microbiome Commercializat Res Ctr PMC, 22 Soonchunhyang Ro, Asan 31538, South Korea
基金
新加坡国家研究基金会;
关键词
drug-resistant tuberculosis; microbiome therapeutics; autophagy; MYCOBACTERIUM-TUBERCULOSIS; PHAGOSOME MATURATION; PULMONARY TUBERCULOSIS; CULTURED MACROPHAGES; IMMUNE-RESPONSES; RAT-LIVER; IFN-GAMMA; PROTEIN; PROBIOTICS; FUSION;
D O I
10.3390/cells14070540
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Tuberculosis, primarily caused by Mycobacterium tuberculosis, is an airborne lung disease and continues to pose a significant global health threat, resulting in millions of deaths annually. The current treatment for tuberculosis involves a prolonged regimen of antibiotics, which leads to complications such as recurrence, drug resistance, reinfection, and a range of side effects. This scenario underscores the urgent need for novel therapeutic strategies to combat this lethal pathogen. Over the last two decades, microbiome therapeutics have emerged as promising next-generation drug candidates, offering advantages over traditional medications. In 2022, the Food and Drug Administration approved the first microbiome therapeutic for recurrent Clostridium infections, and extensive research is underway on microbiome treatments for various challenging diseases, including metabolic disorders and cancer. Research on microbiomes concerning tuberculosis commenced roughly a decade ago, and the scope of this research has broadened considerably over the last five years, with microbiome therapeutics now viewed as viable options for managing drug-resistant tuberculosis. Nevertheless, the understanding of their mechanisms is still in its infancy. Although autophagy has been extensively studied in other diseases, research into its role in tuberculosis is just beginning, with preliminary developments in progress. Against this backdrop, this comprehensive review begins by succinctly outlining tuberculosis' characteristics and assessing existing treatments' strengths and weaknesses, followed by a detailed examination of microbiome-based therapeutic approaches for drug-resistant tuberculosis. Additionally, this review focuses on establishing a basic understanding of microbiome treatments for tuberculosis, mainly through the lens of autophagy as a mechanism of action. Ultimately, this review aims to contribute to the foundational comprehension of microbiome-based therapies for tuberculosis, thereby setting the stage for the further advancement of microbiome therapeutics for drug-resistant tuberculosis.
引用
收藏
页数:23
相关论文
共 184 条
  • [111] Microbiome-immune interactions in tuberculosis
    Mori, Giorgia
    Morrison, Mark
    Blumenthal, Antje
    [J]. PLOS PATHOGENS, 2021, 17 (04)
  • [112] Mubashra, 2024, Role of Autophagy and Reactive Oxygen Species in Cancer Treatment: Principles and Current Strategies, P209
  • [113] Ulcerative Colitis with Multidrug-Resistant Pseudomonas aeruginosa Infection Successfully Treated with Bifidobacterium
    Nagasaki, Azusa
    Takahashi, Hirokazu
    Iinuma, Mizue
    Uchiyama, Takashi
    Watanabe, Seitaro
    Koide, Tomoko
    Tokoro, Chikako
    Inamori, Masahiko
    Abe, Yasunobu
    Nakajima, Atsushi
    [J]. DIGESTION, 2010, 81 (03) : 204 - 205
  • [114] Dynamics and diversity in autophagy mechanisms: lessons from yeast
    Nakatogawa, Hitoshi
    Suzuki, Kuninori
    Kamada, Yoshiaki
    Ohsumi, Yoshinori
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (07) : 458 - 467
  • [115] TB-HIV co-infection: a catastrophic comradeship
    Narendran, G.
    Swaminathan, S.
    [J]. ORAL DISEASES, 2016, 22 : 46 - 52
  • [116] Granulomas and inflammation: Host-Directed Therapies for Tuberculosis
    Ndlovu, Hlumani
    Marakalala, Mohlopheni J.
    [J]. FRONTIERS IN IMMUNOLOGY, 2016, 7
  • [117] Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis
    Negi, Shikha
    Pahari, Susanta
    Bashir, Hilal
    Agrewala, Javed N.
    [J]. FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [118] The Beneficial Effects of Probiotics via Autophagy: A Systematic Review
    Nemati, Marzieh
    Omrani, Gholamhossein Ranjbar
    Ebrahimi, Bahareh
    Montazeri-Najafabady, Nima
    [J]. BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [119] Historical landmarks of autophagy research
    Ohsumi, Yoshinori
    [J]. CELL RESEARCH, 2014, 24 (01) : 9 - 23
  • [120] The history of probiotics: the untold story
    Ozen, M.
    Dinleyici, E. C.
    [J]. BENEFICIAL MICROBES, 2015, 6 (02) : 159 - 165