Privacy preservation techniques through data lifecycle: A comprehensive literature survey

被引:0
作者
Madhusudhanan, Sheema [1 ]
Jose, Arun Cyril [1 ]
机构
[1] Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam (IIITK), Kerala, Kottayam
关键词
Anonymization techniques; Data processing lifecycle; Machine learning for privacy; Privacy preservation; Transaction anonymity;
D O I
10.1016/j.cose.2025.104473
中图分类号
学科分类号
摘要
With the increasing user data volume, safeguarding sensitive information has become more critical than ever. This survey reviews privacy-preserving techniques and models designed to protect Personally Identifiable Information (PII) and other sensitive data. Privacy is essential at every data lifecycle stage, including data collection, storage, processing, sharing and transmission, retention and deletion, and access control. We discuss the challenges associated with each stage and highlight relevant research work. The survey concludes with a discussion of ongoing challenges and potential research directions in data privacy preservation. © 2025 Elsevier Ltd
引用
收藏
相关论文
共 182 条
  • [1] Abbas H., Emmanuel N., Amjad M.F., Yaqoob T., Atiquzzaman M., Iqbal Z., Shafqat N., Shahid W.B., Tanveer A., Ashfaq U., Security assessment and evaluation of VPNs: A comprehensive survey, ACM Comput. Surv., 55, 13s, pp. 1-47, (2023)
  • [2] Abdelhameed S.A., Moussa S.M., Khalifa M.E., Privacy-preserving tabular data publishing: A comprehensive evaluation from web to cloud, Comput. Secur., 72, pp. 74-95, (2018)
  • [3] Aggarwal G., Panigrahy R., Feder T., Thomas D., Kenthapadi K., Khuller S., Zhu A., Achieving anonymity via clustering, ACM Trans. Algorithms, 6, 3, pp. 1-19, (2010)
  • [4] Akter S., Chellappan S., Chakraborty T., Khan T.A., Rahman A., Alim Al Islam A.B.M., Man-in-the-middle attack on contactless payment over NFC communications, IEEE Trans. Dependable Secur. Comput., 18, 6, pp. 3012-3023, (2021)
  • [5] Al Muhander B., Wiese J., Rana O., Perera C., Interactive privacy management: Toward enhancing privacy awareness and control in the internet of things, ACM Trans. Internet Things, 4, 3, pp. 1-34, (2023)
  • [6] Al-Rubaie M., Chang J.M., Privacy-preserving machine learning: Threats and solutions, IEEE Secur. Priv., 17, 2, pp. 49-58, (2019)
  • [7] Albab K.D., Sharma I., Adam J., Kilimnik B., Jeyaraj A., Paul R., Agvanian A., Spiegelberg L., Schwarzkopf M., K9db: Privacy-compliant storage for web applications by construction, 17th USENIX Sym. on Operating Systems Design and Implementation, OSDI 23, pp. 99-116, (2023)
  • [8] Alfalayleh M., Brankovic L., Quantifying privacy: A novel entropy-based measure of disclosure risk, Combinatorial Algorithms, pp. 24-36, (2015)
  • [9] Alkurd R., Abualhaol I., Yanikomeroglu H., Preserving user privacy in personalized networks, IEEE Netw. Lett., 3, 3, pp. 124-128, (2021)
  • [10] Amon M.J., Necaise A., Kartvelishvili N., Williams A., Solihin Y., Kapadia A., Modeling user characteristics associated with interdependent privacy perceptions on social media, ACM Trans. Comput.- Hum. Interact., 30, 3, (2023)