The Humboldt Current System (HCS) off southwest America is known for its strong upwelling and the resulting high primary production and associated oxygen minimum zones (OMZs). Macrozoobenthic species represent a group of organisms that are affected by the low oxygen concentrations in the OMZ. In January 2023, benthic diversity was investigated at 8 stations on a transect off Concepci & oacute;n, central Chile (in the centre of the OMZ) in a water depth range from 56 to 912 m. The measured oxygen values ranged from 0 mu mol/L in the OMZ to 144.64 mu mol/L outside the OMZ. At each station, 3 van Veen grabs were taken, the species identified, counted and weighed. The mean abundance, biomass and diversity were calculated for each station. This analysis provided an overview of the changes in the species communities at different oxygen concentrations. The species communities at the stations with low oxygen levels differed greatly from those with higher oxygen levels. Species diversity at the stations increased during the transition from low (<2 <mu>mol/L) to higher oxygen levels (>100 mu mol/L). In contrast, species abundance and, to a lesser extent, biomass tended to be higher at low oxygen concentrations. The species composition at the various stations showed a high occurrence of polychaetes. The spionid polychaete Paraprionospio pinnata played an important role as a central key species within the OMZ. In addition to Paraprionospio, Ampelisca araucana, Magelona phyllisae, Nephtys ferruginea and Cossura chilensis were found in high abundance in the oxygen minimum zone (50-200 m water depth). At the edge and presumably below the oxygen minimum zone (300-912 m), where the oxygen concentration rises again, the dominance of individual species decreased, and the total number of species increased. In addition, the species composition changed and the abundance of other polychaete families (Cirratulidae, Amphinomidae, Oweniidae and Capitellidae) amplified. The proportion of polychaetes in the total abundance decreased from almost 100% at the low-oxygen stations to around 60% at the stations below the oxygen minimum zone. Bivalvia of the families Thyasiridae, Nuculidae and Yoldiidae were of particular importance at the deeper stations with a share of up to 20% of the total abundance. The study of benthic communities is of central importance to better understand the future changes in the structure and function of marine ecosystems in hypoxic waters.