Solving System of Monotone Variational Inclusion Problems with Multiple Output Sets in Banach Spaces

被引:0
|
作者
Abass, H. A. [1 ,4 ]
Aphane, M. [1 ]
Oyewole, O. K. [2 ]
Narain, O. K. [3 ]
Mustafoyev, K. I. [4 ]
机构
[1] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
[2] Tshwane Univ Technol, Dept Math, PMB 0007, Pretoria, South Africa
[3] Univ Kwazulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[4] Asia Int Univ, Ctr Res & Innovat, Yangiobod MFY, Goijduvon St,House 74, Bukhara, Uzbekistan
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2025年 / 18卷 / 02期
关键词
Bregman demigeneralized mapping; monotone operators; self-adapative method; split common fixed point problem; FIXED-POINT PROBLEM; STRONG-CONVERGENCE; ALGORITHM; ITERATION; OPERATORS;
D O I
10.29020/nybg.ejpam.v18i2.6062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a self-adaptive method for approximating solutions of split common fixed point problem of Bregman demigeneralized mappings and system of monotone variational inclusion problem with multiple output sets in reflexive Banach spaces. By employing our iterative method, we prove a strong convergence theorem for approximating solutions of the aforementioned problems. In summary, we state some consequences of our main result. The result discuss in this paper extends and complements many related results in literature.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Iterative Methods for Solving the Monotone Inclusion Problem and the Fixed Point Problem in Banach Spaces
    Cholamjiak, Prasit
    Sunthrayuth, Pongsakorn
    Singta, Akarate
    Muangchoo, Kanikar
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (03): : 1225 - 1246
  • [42] Banach SSD Spaces and Classes of Monotone Sets
    Simons, S.
    JOURNAL OF CONVEX ANALYSIS, 2011, 18 (01) : 227 - 258
  • [43] Proximal algorithm for solving monotone variational inclusion
    Zhang, Cuijie
    Wang, Yinan
    OPTIMIZATION, 2018, 67 (08) : 1197 - 1209
  • [44] An iterative method for solving split monotone variational inclusion and fixed point problems
    Shehu, Yekini
    Ogbuisi, Ferdinard U.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 503 - 518
  • [45] On split generalized equilibrium and fixed point problems with multiple output sets in real Banach spaces
    H. A. Abass
    O. K. Oyewole
    O. K. Narain
    L. O. Jolaoso
    B. I. Olajuwon
    Computational and Applied Mathematics, 2022, 41
  • [46] Inertial subgradient extragradient method for solving pseudomonotone variational inequality problems in Banach spaces
    Peng, Zai-Yun
    Peng, Zhi-Ying
    Cai, Gang
    Li, Gao-Xi
    APPLICABLE ANALYSIS, 2024, 103 (10) : 1769 - 1789
  • [47] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    O. K. Oyewole
    H. A. Abass
    A. A. Mebawondu
    K. O. Aremu
    Numerical Algorithms, 2022, 89 : 769 - 789
  • [48] Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AXIOMS, 2023, 12 (10)
  • [49] A strong convergence theorem for solving pseudo-monotone variational inequalities and fixed point problems using subgradient extragradient method in Banach spaces
    Ma, Fei
    Yang, Jun
    Yin, Min
    AIMS MATHEMATICS, 2022, 7 (04): : 5015 - 5028
  • [50] Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces
    A. Taiwo
    T. O. Alakoya
    O. T. Mewomo
    Numerical Algorithms, 2021, 86 : 1359 - 1389