Solving System of Monotone Variational Inclusion Problems with Multiple Output Sets in Banach Spaces

被引:0
|
作者
Abass, H. A. [1 ,4 ]
Aphane, M. [1 ]
Oyewole, O. K. [2 ]
Narain, O. K. [3 ]
Mustafoyev, K. I. [4 ]
机构
[1] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
[2] Tshwane Univ Technol, Dept Math, PMB 0007, Pretoria, South Africa
[3] Univ Kwazulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[4] Asia Int Univ, Ctr Res & Innovat, Yangiobod MFY, Goijduvon St,House 74, Bukhara, Uzbekistan
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2025年 / 18卷 / 02期
关键词
Bregman demigeneralized mapping; monotone operators; self-adapative method; split common fixed point problem; FIXED-POINT PROBLEM; STRONG-CONVERGENCE; ALGORITHM; ITERATION; OPERATORS;
D O I
10.29020/nybg.ejpam.v18i2.6062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a self-adaptive method for approximating solutions of split common fixed point problem of Bregman demigeneralized mappings and system of monotone variational inclusion problem with multiple output sets in reflexive Banach spaces. By employing our iterative method, we prove a strong convergence theorem for approximating solutions of the aforementioned problems. In summary, we state some consequences of our main result. The result discuss in this paper extends and complements many related results in literature.
引用
收藏
页数:22
相关论文
共 50 条