Fullerene nanosheets for surface-enhanced Raman spectroscopy

被引:0
|
作者
Yang, Linchangqing [1 ,2 ]
Li, Yahui [2 ]
Liu, Wei [2 ]
Zhang, Junhao [3 ]
Kong, Qinghong [1 ]
Xi, Guangcheng [2 ]
机构
[1] Jiangsu Univ, Sch Environm & Safety Engn, Zhenjiang 212013, Peoples R China
[2] Chinese Acad Inspect & Quarantine, Key Lab Consumer Prod Qual Safety Inspect & Risk A, Beijing 100176, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212013, Peoples R China
来源
CHEMPHYSMATER | 2025年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
Fullerenes; Nanosheets; Raman sensing; Interfacial charge transfer; Pollutant detection; SOLAR-CELLS; C-60; SCATTERING; NANOSTRUCTURES; NANOPARTICLES; TEMPERATURE; TRANSISTORS; SUBSTRATE; NANORODS;
D O I
10.1016/j.chphma.2024.04.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Most surface-enhanced Raman scattering (SERS) substrates are based on noble metals or transition metal semiconductors. Developing nonmetallic SERS substrates is of great significance for expanding the application scope of SERS substrate materials. In this study, ultrathin C60 nanosheets with two-dimensional structures were synthesized using CVD and used as SERS substrates. Owing to the combined effects of favorable factors such as the expanded specific surface area and matched interfacial charge transport paths, the substrate has a minimum detection limit of 10-11 for rhodamine 6G and a Raman enhancement factor of 107 . In addition, the C60 nanosheets exhibited good stability and uniformity as SERS substrates.
引用
收藏
页码:86 / 90
页数:5
相关论文
共 50 条
  • [31] Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman Spectroscopy Substrates with High Sensitivity
    Wu, Hongrong
    Zhou, Xiaocheng
    Li, Jidong
    Li, Xuemei
    Li, Baowen
    Fei, Wenwen
    Zhou, Jianxin
    Yin, Jun
    Guo, Wanlin
    SMALL, 2018, 14 (37)
  • [32] Room-temperature sensor based on surface-enhanced Raman spectroscopy
    Yang, Kuang-Hsuan
    Mai, Fu-Der
    Yu, Chung-Chin
    Liu, Yu-Chuan
    ANALYST, 2014, 139 (20) : 5164 - 5169
  • [33] Classification and Application of Surface-enhanced Raman Spectroscopy Substrates
    Chen, Shao-Yun
    Zhang, Xing-Ying
    Liu, Ben
    Wang, Zhong-Cai
    Hu, Cheng-Long
    Chen, Jian
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 52 (07)
  • [34] TopUp Plasmonic Arrays for Surface-Enhanced Raman Spectroscopy
    Patze, Sophie
    Huebner, Uwe
    Weber, Karina
    Cialla-May, Dana
    Popp, Juergen
    ADVANCED MATERIALS INTERFACES, 2016, 3 (19):
  • [35] Silver Flowerlike Structures for Surface-Enhanced Raman Spectroscopy
    Tsutsumanova, Gitchka G.
    Todorov, Neno D.
    Russev, Stoyan C.
    Abrashev, Miroslav V.
    Ivanov, Victor G.
    Lukoyanov, Alexey V.
    NANOMATERIALS, 2021, 11 (12)
  • [36] Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots
    Li, Hao
    Xu, Qun
    Wang, Xuzhe
    Liu, Wei
    SMALL, 2018, 14 (28)
  • [37] Monitoring the transformation of aliphatic and fullerene molecules by high-energy electrons using surface-enhanced Raman spectroscopy
    Mojarad, Nassir
    Tisserant, Jean-Nicolas
    Beyer, Hannes
    Dong, Hao
    Reissner, Patrick A.
    Fedoryshyn, Yuriy
    Stemmer, Andreas
    NANOTECHNOLOGY, 2017, 28 (16)
  • [38] Hierarchical Porous Plasmonic Metamaterials for Reproducible Ultrasensitive Surface-Enhanced Raman Spectroscopy
    Zhang, Xinyi
    Zheng, Yuanhui
    Liu, Xin
    Lu, Wei
    Dai, Jiyan
    Lei, Dang Yuan
    MacFarlane, Douglas R.
    ADVANCED MATERIALS, 2015, 27 (06) : 1090 - 1096
  • [39] Surface-enhanced Raman spectroscopy of indanthrone and flavanthrone
    Chang, Jingjing
    Canamares, Maria Vega
    Aydin, Metin
    Vetter, Wilfried
    Schreiner, Manfred
    Xu, Weiqing
    Lombardi, John R.
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (11) : 1557 - 1563
  • [40] Plasmonic Dodecahedral-Walled Elongated Nanoframes for Surface-Enhanced Raman Spectroscopy
    Hilal, Hajir
    Haddadnezhad, Mohammadnavid
    Oh, Myeong Jin
    Jung, Insub
    Park, Sungho
    SMALL, 2023, 20 (03)