Fullerene nanosheets for surface-enhanced Raman spectroscopy

被引:0
|
作者
Yang, Linchangqing [1 ,2 ]
Li, Yahui [2 ]
Liu, Wei [2 ]
Zhang, Junhao [3 ]
Kong, Qinghong [1 ]
Xi, Guangcheng [2 ]
机构
[1] Jiangsu Univ, Sch Environm & Safety Engn, Zhenjiang 212013, Peoples R China
[2] Chinese Acad Inspect & Quarantine, Key Lab Consumer Prod Qual Safety Inspect & Risk A, Beijing 100176, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212013, Peoples R China
来源
CHEMPHYSMATER | 2025年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
Fullerenes; Nanosheets; Raman sensing; Interfacial charge transfer; Pollutant detection; SOLAR-CELLS; C-60; SCATTERING; NANOSTRUCTURES; NANOPARTICLES; TEMPERATURE; TRANSISTORS; SUBSTRATE; NANORODS;
D O I
10.1016/j.chphma.2024.04.001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Most surface-enhanced Raman scattering (SERS) substrates are based on noble metals or transition metal semiconductors. Developing nonmetallic SERS substrates is of great significance for expanding the application scope of SERS substrate materials. In this study, ultrathin C60 nanosheets with two-dimensional structures were synthesized using CVD and used as SERS substrates. Owing to the combined effects of favorable factors such as the expanded specific surface area and matched interfacial charge transport paths, the substrate has a minimum detection limit of 10-11 for rhodamine 6G and a Raman enhancement factor of 107 . In addition, the C60 nanosheets exhibited good stability and uniformity as SERS substrates.
引用
收藏
页码:86 / 90
页数:5
相关论文
共 50 条
  • [21] Plasmonic DNA-Origami Nanoantennas for Surface-Enhanced Raman Spectroscopy
    Kuehler, Paul
    Roller, Eva-Maria
    Schreiber, Robert
    Liedl, Tim
    Lohmueller, Theobald
    Feldmann, Jochen
    NANO LETTERS, 2014, 14 (05) : 2914 - 2919
  • [22] Advanced silver and gold substrates for surface-enhanced Raman spectroscopy of pesticides
    Atanasov, Petar Asenov
    Nedyalkov, Nikolay Nedyalkov
    Fukata, Naoki
    Jevasuwan, Wipakorn
    SPECTROSCOPY LETTERS, 2021, 54 (07) : 528 - 538
  • [23] Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy
    Xie, Lifang
    Gong, Kedong
    Liu, Yangyang
    Zhang, Liwu
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (01) : 25 - 43
  • [24] Controlling the Electron Concentration for Surface-Enhanced Raman Spectroscopy
    Nguyen, Thi Anh Nguyet
    Yu, Ying-Lung
    Chang, Ya Chien
    Wang, Yu-Han
    Woon, Wei-Yen
    Wu, Chien-Ting
    Lin, Kun-Lin
    Liu, Cheng-Yi
    Chien, Fan-Ching
    Lai, Kun-Yu
    ACS PHOTONICS, 2021, 8 (08) : 2410 - 2416
  • [25] Coupled subwavelength gratings for surface-enhanced Raman spectroscopy
    Hou, Yumin
    Xu, Jun
    Li, Wuxia
    Wang, Xiaowei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (23) : 10946 - 10951
  • [26] Surface-Enhanced Raman Spectroscopy of the Endothelial Cell Membrane
    Fogarty, Simon W.
    Patel, Imran I.
    Martin, Francis L.
    Fullwood, Nigel J.
    PLOS ONE, 2014, 9 (09):
  • [27] Nanocrystalline graphene for ultrasensitive surface-enhanced Raman spectroscopy
    Faggio, Giuliana
    Grillo, Rossella
    Lisi, Nicola
    Buonocore, Francesco
    Chierchia, Rosa
    Kim, Min Jung
    Lee, Gwan-Hyoung
    Capasso, Andrea
    Messina, Giacomo
    APPLIED SURFACE SCIENCE, 2022, 599
  • [28] Applications of surface-enhanced Raman spectroscopy in environmental detection
    Terry, Lynn R.
    Sanders, Sage
    Potoff, Rebecca H.
    Kruel, JacobW.
    Jain, Manan
    Guo, Huiyuan
    ANALYTICAL SCIENCE ADVANCES, 2022, 3 (3-4): : 113 - 145
  • [29] The Investigation of Humic Acid by Surface-Enhanced Raman Spectroscopy
    Zhang Wen-juan
    Li Ying
    Guo Jin-jia
    Xiao Qiong
    Yu Li
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (05) : 1249 - 1252
  • [30] Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy
    Liu, Minmin
    Chen, Wei
    BIOSENSORS & BIOELECTRONICS, 2013, 46 : 68 - 73