Multimodal ultrasound-based radiomics and deep learning for differential diagnosis of O-RADS 4–5 adnexal masses

被引:0
|
作者
Song Zeng [1 ]
Haoran Jia [2 ]
Hao Zhang [1 ]
Xiaoyu Feng [1 ]
Meng Dong [1 ]
Lin Lin [1 ]
XinLu Wang [1 ]
Hua Yang [1 ]
机构
[1] Shengjing Hospital of China Medical University,Department of Ultrasound
[2] Shengjing Hospital of China Medical University,Department of Thoracic Surgery
关键词
Artificial intelligence; Radiomics; Deep learning; Adnexal masses; Contrast-enhanced ultrasound; O-RADS;
D O I
10.1186/s40644-025-00883-z
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Developing a deep learning model for predicting ovarian cancer in Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) Category 4 lesions: A multicenter study
    Xie, Wenting
    Lin, Wenjie
    Li, Ping
    Lai, Hongwei
    Wang, Zhilan
    Liu, Peizhong
    Huang, Yijun
    Liu, Yao
    Tang, Lina
    Lyu, Guorong
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2024, 150 (07)
  • [22] Deep learning radiomics on grayscale ultrasound images assists in diagnosing benign and malignant of BI-RADS 4 lesions
    Yang, Liu
    Zhang, Naiwen
    Jia, Junying
    Ma, Zhe
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] A nomogram combining clinical features, O-RADS US, and radiomics based on ultrasound imaging for diagnosing ovarian cancer
    Wenting Xie
    Yaoqin Wang
    Zhongshi Du
    Yijie Chen
    Xiaohui Ke
    Tingfan Wu
    Zhilan Wang
    Lina Tang
    Scientific Reports, 15 (1)
  • [24] Apparent diffusion coefficient analysis of solid tissue helps distinguish borderline from invasive malignant adnexal masses rated O-RADS MRI 4
    Bourourou, Rimeh
    Nougaret, Stephanie
    Rockall, Andrea
    Bazot, Marc
    Razakamanantsoa, Leo
    Thomassin-Naggara, Isabelle
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2024, 105 (10) : 386 - 394
  • [25] Preoperative Evaluation of Hepatocellular Carcinoma Differentiation Using Contrast-Enhanced Ultrasound-Based Deep-Learning Radiomics Model
    Qin, Xiachuan
    Hu, Xiaomin
    Xiao, Weihan
    Zhu, Chao
    Ma, Qianqin
    Zhang, Chaoxue
    JOURNAL OF HEPATOCELLULAR CARCINOMA, 2023, 10 : 157 - 168
  • [26] Improving risk stratification of indeterminate adnexal masses on MRI: What imaging features help predict malignancy in O-RADS MRI 4 lesions?
    Wong, Bernadette Z. Y.
    Andrieu, Pamela I. Causa
    Sonoda, Yukio
    Chi, Dennis S.
    Aviki, Emeline M.
    Vargas, Hebert A.
    Woo, Sungmin
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 168
  • [27] Diagnostic performance of IOTA SR and O-RADS combined with CA125, HE4, and risk of malignancy algorithm to distinguish benign and malignant adnexal masses
    Yang, Yang
    Ju, Hao
    Huang, Ying
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 165
  • [28] Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study
    Zhang, Di
    Zhou, Wang
    Lu, Wen-Wu
    Qin, Xia-Chuan
    Zhang, Xian-Ya
    Wang, Jun-Li
    Wu, Jun
    Luo, Yan-Hong
    Duan, Ya-Yang
    Zhang, Chao-Xue
    ACADEMIC RADIOLOGY, 2024, 31 (10) : 3917 - 3928
  • [29] Ultrasound-Based Deep Learning Models Performance versus Expert Subjective Assessment for Discriminating Adnexal Masses: A Head-to-Head Systematic Review and Meta-Analysis
    Lourenco, Mariana
    Arrufat, Teresa
    Satorres, Elena
    Maderuelo, Sara
    Novillo-Del Alamo, Blanca
    Guerriero, Stefano
    Orozco, Rodrigo
    Alcazar, Juan Luis
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [30] American college of radiology ovarian-adnexal reporting and data system ultrasound (O-RADS): Diagnostic performance and inter-reviewer agreement for ovarian masses in children
    Wang, Huimin
    Wang, Limin
    An, Siwei
    Ma, Qiuping
    Tu, Yanping
    Shang, Ning
    Pan, Yunxiang
    FRONTIERS IN PEDIATRICS, 2023, 11