Engineering Thermal Stability of Binary Manganese-Based Layered Oxide Cathodes Toward Advanced Sodium-Ion Batteries

被引:0
|
作者
Jin, Zi-Ao [1 ,2 ]
Yan, Mengmeng [1 ]
Wang, Peng-Ji [1 ]
Chang, Yu-Xin [1 ]
Zhang, Xing [3 ]
Zheng, Li-Rong [4 ]
Zhang, Jing [4 ]
Xu, Sailong [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[2] Quzhou Inst Innovat Resource Chem Engn, Quzhou 324003, Peoples R China
[3] Chinese Acad Sci, Inst Chem, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst High Energy Phys, Multidiscipline Res Ctr, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
layered oxide cathodes; sodium ion batteries; structural stability; thermal stability; OXIDATIVE DECOMPOSITION; PROPYLENE CARBONATE; SUBSTITUTION; CU;
D O I
10.1002/smll.202412156
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thermal stability is vital for layered oxide cathodes to boost the operation safety of rechargeable batteries, in particular, the highly enriched transition metal Na-based layered oxides for sodium-ion batteries (SIBs). Transition metals significantly influence catalysis, chemical/electrochemical reactions with electrolytes, yet the catalysis capability of different transition metals remains unclear. Here, the thermal stability of three types of binary manganese-based layered oxides (Na0.78TM0.33Mn0.67O2, TM = Cu, Ni, and Fe) is revealed. The CuMn-based layered oxide has the minimum catalytic effect on electrolyte decomposition when charged to high voltages, delivering a good thermal stability, as revealed by combining density function theoretic calculations, thermogravimetry, and differential scanning calorimetry measurements. Further promotion of thermal stability and electrochemical performance is performed by MgTi co-doping to suppress irreversible phase transition and enhance superior Na+ diffusion kinetics. Consequently, the highest onset temperature (269.5 degrees C) and the lowest heat generation (106.8 J g-1) are achieved for the MgTi co-doped cathode, as well as the remarkable capacity retention of 91.7% upon 500 cycles at 1C. The results provide a new insight into constructing high-efficiency layered oxide cathode materials for SIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries
    Zhao, Chenglong
    Ding, Feixiang
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 264 - 269
  • [22] Current issues and corresponding optimizing strategies of layered oxide cathodes for sodium-ion batteries
    Tan, Xiang
    Zeng, Jun
    Sun, Luyi
    Peng, Chenxi
    Li, Zheng
    Zou, Shuhao
    Shi, Qian
    Wang, Hui
    Liu, Jun
    INFOMAT, 2025,
  • [23] A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries
    Jin, Junteng
    Liu, Yongchang
    Pang, Xuelu
    Wang, Yao
    Xing, Xianran
    Chen, Jun
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (03) : 385 - 402
  • [24] A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries
    Junteng Jin
    Yongchang Liu
    Xuelu Pang
    Yao Wang
    Xianran Xing
    Jun Chen
    Science China Chemistry, 2021, 64 : 385 - 402
  • [25] Structural degradation mechanisms and modulation technologies of layered oxide cathodes for sodium-ion batteries
    Song, Tianyi
    Wang, Chenchen
    Lee, Chun-Sing
    CARBON NEUTRALIZATION, 2022, 1 (01): : 68 - 92
  • [26] Doping Engineering of Sodium Vanadium Fluorophosphates Cathodes for Sodium-Ion Batteries
    Kim, Rakyung
    Hwang, Minjun
    Park, Ho Seok
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2025,
  • [27] Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries
    Liu, Qiannan
    Hu, Zhe
    Chen, Mingzhe
    Zou, Chao
    Jin, Huile
    Wang, Shun
    Chou, Shu-Lei
    Dou, Shi-Xue
    SMALL, 2019, 15 (32)
  • [28] Review of Layered Transition Metal Oxide Materials for Cathodes in Sodium-Ion Batteries
    Ahangari, Mehdi
    Zhou, Meng
    Luo, Hongmei
    MICROMACHINES, 2025, 16 (02)
  • [29] Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries
    Guo, Shaohua
    Sun, Yang
    Liu, Pan
    Yi, Jin
    He, Ping
    Zhang, Xiaoyu
    Zhu, Yanbei
    Senga, Ryosuke
    Suenaga, Kazu
    Chen, Mingwei
    Zhou, Haoshen
    SCIENCE BULLETIN, 2018, 63 (06) : 376 - 384
  • [30] Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit
    Kong, Ling-Yi
    Liu, Han-Xiao
    Zhu, Yan-Fang
    Li, Jia-Yang
    Su, Yu
    Li, Hong-Wei
    Hu, Hai-Yan
    Liu, Yi-Feng
    Yang, Ming-Jing
    Jian, Zhuang-Chun
    Jia, Xin-Bei
    Chou, Shu-Lei
    Xiao, Yao
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (01) : 191 - 213