Bioconvection for Riga wedge flow of tangent hyperbolic nanofluids in the presence of activation energy and mass suction

被引:1
作者
Li, Guoning [1 ]
Abdal, Sohaib [2 ]
Zhang, Biaofeng [1 ]
Shah, Nehad Ali [3 ]
Fatima, Zarwa [4 ]
机构
[1] Kunsan Natl Univ, Dept Phys Educ, Gunsan Su 54150, Jeonrabug Do, South Korea
[2] SIMATS, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamilnadu, India
[3] Sejong Univ, Dept Mech Engn, Seoul 05006, South Korea
[4] Khawaja Fareed Univ Engn & Informat Technol, Dept Math, Rahim Yar Khan 64200, Pakistan
关键词
Tangent hyperbolic fluid; Bioconvection; Magnetohydrodynamic; Riga wedge; Runge-Kutta method;
D O I
10.1007/s10973-025-14051-9
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article seeks to analyze the mass and heat transfer of a bioconvective tangent hyperbolic nanofluid as it flows through an expandable Riga wedge, considering influences such as thermophoresis, chemical reactions, Brownian motion, and a heat source. This exploration encompasses stream calculations with modified Hartmann numbers, notably in the unstable tangent hyperbolic fluid stream situation. This work aims to enforce heat transportation with homogeneous inclusion of nano-species. The present study highlights the coupled impact of bioconvection, activation energy, and chemical reaction in tangent hyperbolic nanofluids along an extendable Riga wedge-a geometrical setting that has rarely been discussed in the open literature. Minimal studies have been conducted to address such complex relations with realistic applications in high-performance heat exchangers, biomedical devices, and electronic coolers. The novelty ensues when considering bioconvection-biochemical reactions and activation energy in tangent hyperbolic nanofluid flow over a rarely analyzed expanding Riga wedge configuration. New insights obtained in the optimization of heat and species transfer with this modern numerical solution are also useful for engineering and biomedicine. Additionally, this work finds immense practical relevance in designing, among others, efficient heat exchangers, electronic cooling, and biomedical fluid transportation systems. A pair of similarity transformations is being used to acquire dimensionless forms of the fluid regulating equations. The numerical analysis is conducted using the RK-4 method in conjunction with the shooting technique. The effects of several parameters on the motile density profiles, temperature, concentration, and non-dimensional velocity are graphically represented. Analyses are conducted on the effects of pertinent parameters on skin friction, heat transfer coefficient, Sherwood number, and motile density coefficient. It is noticed that when the modified Hartmann number Mh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm{{h}}$$\end{document} is elevated, the velocity profile f '(eta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(\eta )$$\end{document} of the tangent hyperbolic fluid increases faster than that of Newtonian fluid. In the presence of Pr and Bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\mathrm{{i}}$$\end{document}, the local Nusselt number -theta '(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\theta '(0)$$\end{document} increases.
引用
收藏
页码:7841 / 7857
页数:17
相关论文
共 36 条
[1]   Bioconvective Flow of Tangent Hyperbolic Hybrid Nanofluid Through Different Geometries with Temperature and Concentration Dependent Heat Source: Marangoni Convection [J].
Abbas, Munawar ;
Abbas, Ansar ;
Kanwal, Humaira ;
Majeed, Afraz Hussain ;
Jan, Ahmed Zubair .
BIONANOSCIENCE, 2024, 14 (01) :429-446
[2]   Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy [J].
Abbas, S. Z. ;
Khan, M. Ijaz ;
Kadry, S. ;
Khan, W. A. ;
Israr-Ur-Rehman, M. ;
Waqas, M. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 190
[3]   On development of heat transportation through bioconvection of Maxwell nanofluid flow due to an extendable sheet with radiative heat flux and prescribed surface temperature and prescribed heat flux conditions [J].
Abdal, Sohaib ;
Siddique, Imran ;
Afzal, Saima ;
Chu, Yu-Ming ;
Ahmadian, Ali ;
Salahshour, Soheil .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (10) :11355-11372
[4]   Distinctive approach for MHD natural bioconvection flow of Reiner-Rivlin nano-liquid due to an isothermal sphere [J].
Alarabi, T. H. ;
Mahdy, A. ;
Abo-zaid, Omima A. .
CASE STUDIES IN THERMAL ENGINEERING, 2024, 55
[5]  
Ali B, 2024, NUMER HEAT TR A-APPL, P1
[6]   Study of Bioconvection Phenomenon in Jefferey Model in a Darcy-Forchheimer Porous Medium [J].
Ali, Muhammad Hussain ;
Abbas, Syed Tehseen ;
Sohail, Muhammad ;
Singh, Abha .
BIONANOSCIENCE, 2024, 14 (04) :4666-4678
[7]   Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms [J].
Alsaedi, A. ;
Khan, M. Ijaz ;
Farooq, M. ;
Gull, Numra ;
Hayat, T. .
ADVANCED POWDER TECHNOLOGY, 2017, 28 (01) :288-298
[8]  
Es-Sabry Y, 2025, International Journal of Thermofluids, V26, P101041, DOI [10.1016/j.ijft.2024.101041, 10.1016/j.ijft.2024.101041, DOI 10.1016/J.IJFT.2024.101041]
[9]  
Falodun Olumide Bidemi, 2023, CFD letters, V16, P162, DOI [10.37934/cfdl.16.2.162183, DOI 10.37934/CFDL.16.2.162183]
[10]   Numerical investigation for MHD Prandtl nanofluid transportation due to a moving wedge: Keller box approach [J].
Habib, Danial ;
Salamat, Nadeem ;
Abdal, Sajjad Hussain Sohaib ;
Ali, Bagh .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 135