Fractal Functions and Fractal Dimensions on the Product of the Sierpiński Gaskets

被引:0
作者
Jebali, Hajer [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
关键词
Fractal interpolation functions; Fractal dimension; Rakotch contractions; Sierpi & nacute; ski gasket; Invariant measure; Pluriharmonic functions; INTERPOLATION FUNCTIONS;
D O I
10.1007/s00025-025-02425-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a nonlinear fractal interpolation function on the product of the Sierpi & nacute;ski gaskets, and we prove that its graph is the unique attractor of an iterated function system defined, in a more general setting, by use of Rakotch contractions. Moreover, we use the H & ouml;lder continuity of pluriharmonic functions to estimate the fractal dimensions of the graph of the fractal interpolation function and those of the self-measure supported on it.
引用
收藏
页数:19
相关论文
共 52 条
[1]  
Agrawal V, 2021, EUR PHYS J-SPEC TOP, V230, P3781, DOI 10.1140/epjs/s11734-021-00304-9
[2]   On the box dimension of recurrent fractal interpolation functions defined with Matkowski contractions [J].
Attia, Najmeddine ;
Jebali, Hajer .
JOURNAL OF ANALYSIS, 2024, 32 (06) :3453-3474
[3]   ON A CLASS OF HAUSDORFF MEASURE OF CARTESIAN PRODUCT SETS IN METRIC SPACES [J].
Attia, Najmeddine ;
Jebali, Hajer ;
Guedri, Rihab .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (02) :601-623
[4]   On the construction of recurrent fractal interpolation functions using Geraghty contractions [J].
Attia, Najmeddine ;
Jebali, Hajer .
ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (11) :6866-6880
[5]   A Note on Fractal Measures and Cartesian Product Sets [J].
Attia, Najmeddine ;
Jebali, Hajer ;
Khlifa, Meriem Ben Hadj .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) :4383-4404
[6]   A Multifractal Formalism for Hewitt-Stromberg Measures [J].
Attia, Najmeddine ;
Selmi, Bilel .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) :825-862
[7]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[8]  
Barnsley Michael., 1988, Fractals Everywhere
[9]   Partial differential equations on products of Sierpinski gaskets [J].
Bockelman, Brian ;
Strichartz, Robert S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1361-1375
[10]   Fractal interpolation on the Sierpinski Gasket [J].
Celik, Derya ;
Kocak, Sahin ;
Ozdemir, Yunus .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :343-347