Stability and Convergence Analysis of a Numerical Method for Solving a ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta$$\end{document}-Caputo Time Fractional Black–Scholes Model via European OptionsStability and convergence...F. Maddouri

被引:0
作者
Feten Maddouri [1 ]
机构
[1] Université de la Manouba,Ecole Nationale des Sciences de l’Informatique
关键词
Caputo fractional derivative; Black–Scholes model; European options; Finite difference scheme; Numerical method; stability; convergence.; 26A33; 65M06; 65M15; 65M22; 65N12.;
D O I
10.1007/s10614-024-10678-2
中图分类号
学科分类号
摘要
In this paper, a new ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta$$\end{document}-Caputo Fractional Derivative Black-Scholes Model via European Options (CFBSM) has been studied. Moreover, we have proposed a new Numerical Implicit Scheme (NIS) for solving the CFBSM. Also, we studied the stability and the convergence of the NIS. Finally, some numerical experiments are given to compare and show the efficiency of the NIS to other numerical methods for solving fractional Black-Scholes (BS) model. Moreover, by those experiments, we proved the efficiency and the advantages of the CFBSM versus the classical integer-order derivative BS model via European Options.
引用
收藏
页码:3419 / 3446
页数:27
相关论文
empty
未找到相关数据