3D bioprinting of collagen-based high-resolution internally perfusable scaffolds for engineering fully biologic tissue systems

被引:0
作者
Shiwarski, Daniel J. [1 ,2 ,3 ,4 ,6 ]
Hudson, Andrew R. [1 ]
Tashman, Joshua W. [1 ]
Bakirci, Ezgi [1 ]
Moss, Samuel [1 ]
Coffin, Brian D. [3 ,5 ]
Feinberg, Adam W. [1 ,5 ]
机构
[1] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Heart Lung & Blood Vasc Med Inst, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Sch Med, Dept Med, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[6] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15213 USA
来源
SCIENCE ADVANCES | 2025年 / 11卷 / 17期
基金
美国国家卫生研究院;
关键词
PREVASCULARIZED TISSUES; CELL; ANGIOGENESIS; NETWORKS; MODELS; MATRIX;
D O I
10.1126/sciadv.adu5905
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organ-on-a-chip and microfluidic systems have improved the translational relevance of in vitro systems; however, current manufacturing approaches impart limitations on materials selection, non-native mechanical properties, geometric complexity, and cell-driven remodeling into functional tissues. Here, we three-dimensionally (3D) bioprint extracellular matrix (ECM) and cells into collagen-based high-resolution internally perfusable scaffolds (CHIPS) that integrate with a vascular and perfusion organ-on-a-chip reactor (VAPOR) to form a complete tissue engineering platform. We improve the fidelity of freeform reversible embedding of suspended hydrogels (FRESH) bioprinting to produce a range of CHIPS designs fabricated in a one-step process. CHIPS exhibit size-dependent permeability of perfused molecules into the surrounding scaffold to support cell viability and migration. Lastly, we implemented multi-material bioprinting to control 3D spatial patterning, ECM composition, cellularization, and material properties to create a glucose-responsive, insulin-secreting pancreatic-like CHIPS with vascular endothelial cadherin+ vascular-like networks. Together, CHIPS and VAPOR form a platform technology toward engineering full organ-scale function for disease modeling and cell replacement therapy.
引用
收藏
页数:20
相关论文
共 72 条
  • [1] A protocol for studying glucose homeostasis and islet function in mice
    Al Rijjal, Dana
    Wheeler, Michael B.
    [J]. STAR PROTOCOLS, 2022, 3 (01):
  • [2] Advancing extrusion-based embedded 3D bioprinting via scientific, engineering, and process innovations
    Bakirci, Ezgi
    Adib, Ali Asghari
    Ashraf, Syed Faaz
    Feinberg, Adam W.
    [J]. BIOFABRICATION, 2025, 17 (02)
  • [3] 3D Bioprinted Patient-Specific Extracellular Matrix Scaffolds for Soft Tissue Defects
    Behre, Anne
    Tashman, Joshua W.
    Dikyol, Caner
    Shiwarski, Daniel J.
    Crum, Raphael J.
    Johnson, Scott A.
    Kommeri, Remya
    Hussey, George S.
    Badylak, Stephen F.
    Feinberg, Adam W.
    [J]. ADVANCED HEALTHCARE MATERIALS, 2022, 11 (24)
  • [4] Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques
    Bochenek, Matthew A.
    Veiseh, Omid
    Vegas, Arturo J.
    McGarrigle, James J.
    Qi, Meirigeng
    Marchese, Enza
    Omami, Mustafa
    Doloff, Joshua C.
    Mendoza-Elias, Joshua
    Nourmohammadzadeh, Mohammad
    Khan, Arshad
    Yeh, Chun-Chieh
    Xing, Yuan
    Isa, Douglas
    Ghani, Sofia
    Li, Jie
    Landry, Casey
    Bader, Andrew R.
    Olejnik, Karsten
    Chen, Michael
    Hollister-Lock, Jennifer
    Wang, Yong
    Greiner, Dale L.
    Weir, Gordon C.
    Strand, Berit Lokensgard
    Rokstad, Anne Mari A.
    Lacik, Igor
    Langer, Robert
    Anderson, Daniel G.
    Oberholzer, Jose
    [J]. NATURE BIOMEDICAL ENGINEERING, 2018, 2 (11): : 810 - 821
  • [5] Engineering the vasculature for islet transplantation
    Bowers, Daniel T.
    Song, Wei
    Wang, Long-Hai
    Ma, Minglin
    [J]. ACTA BIOMATERIALIA, 2019, 95 : 131 - 151
  • [6] Engineered tissue vascularization and engraftment depends on host model
    Brady, Eileen L.
    Prado, Olivia
    Johansson, Fredrik
    Mitchell, Shannon N.
    Martinson, Amy M.
    Karbassi, Elaheh
    Reinecke, Hans
    Murry, Charles E.
    Davis, Jennifer
    Stevens, Kelly R.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] Buchanan CF, 2014, TISSUE ENG PART C-ME, V20, P64, DOI [10.1089/ten.tec.2012.0731, 10.1089/ten.TEC.2012.0731]
  • [8] 3D bioprinting strategy for engineering vascularized tissue models
    Chae, Suhun
    Ha, Dong-Heon
    Lee, Hyungseok
    [J]. INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (05) : 15 - 33
  • [9] The Foreign Body Response Demystified
    Chandorkar, Yashoda
    Ravikumar, K.
    Basu, Bikramjit
    [J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (01): : 19 - 44
  • [10] On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics
    Chen, Michelle B.
    Whisler, Jordan A.
    Froese, Julia
    Yu, Cathy
    Shin, Yoojin
    Kamm, Roger D.
    [J]. NATURE PROTOCOLS, 2017, 12 (05) : 865 - 880