Two different types of Deligne categories have been defined to interpolate the finite dimensional complex representations of the hyperoctahedral group. The first one, initially defined by Knop and then further studied by Likeng and Savage, uses a categorical analogue of the permutation representation as a tensor generator. The second one, due to Flake and Maassen, is tensor generated by a categorical analogue of the reflection representation. We construct a symmetric monoidal functor between the two and show that it is an equivalence of symmetric monoidal categories.