Deep learning on electrocardiogram waveforms to stratify risk of obstructive stable coronary artery disease

被引:0
作者
Trivedi, Rishi K. [1 ]
Chiu, I-Min [1 ]
Hughes, John Weston [2 ]
Rogers, Albert J. [2 ]
Ouyang, David [1 ]
机构
[1] Cedars Sinai Med Ctr, Smidt Heart Inst, Dept Cardiol, 127 S San Vicente Blvd,A3600, Los Angeles, CA 90048 USA
[2] Stanford Univ, Dept Med, Div Cardiol, Palo Alto, CA USA
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2025年 / 6卷 / 03期
基金
美国国家卫生研究院;
关键词
Deep learning; Artificial intelligence; Coronary artery disease; Coronary angiography; Chronic coronary disease; EMERGENCY-DEPARTMENT; SEX-DIFFERENCES; CHEST-PAIN; DIAGNOSIS; DEMOGRAPHICS; VALIDATION; WOMEN; MODEL;
D O I
10.1093/ehjdh/ztaf020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Coronary artery disease (CAD) incidence continues to rise with an increasing burden of chronic coronary disease (CCD). Current probability-based risk assessment for obstructive CAD (oCAD) lacks sufficient diagnostic accuracy. We aimed to develop and validate a deep learning (DL) algorithm utilizing electrocardiogram (ECG) waveforms and clinical features to predict oCAD in patients with suspected CCD.Methods and results The study includes subjects undergoing invasive angiography for evaluation of CCD over a 4-year period at a quaternary care centre. oCAD was defined as performance of percutaneous coronary intervention (PCI) based on assessment by interventional cardiologists during elective angiography. DL models were developed for ECG waveforms alone (DL-ECG), clinical features from standard risk scores (DL-Clinical), and the combination of ECG waveforms and clinical features (DL-MM); a commonly used pre-test probability estimation tool from the CAD Consortium study was used for comparison (CAD2) [3]. The CAD2 model [AUC 0.733 (0.717-0.750)] had similar performance as the DL-Clinical model [AUC 0.762 (0.746-0.778)]. The DL-ECG model [AUC 0.741 (0.726-0.758)] had similar performance as both the clinical feature models. The DL-MM model [AUC 0.807 (0.793-0.822)] had a superior performance. Validation in an external cohort demonstrated similar performance in the DL-MM [AUC 0.716 (0.707-0.726)] and CAD2 risk score [AUC 0.715 (0.705-0.724)].Conclusion A multi-modality DL model utilizing ECG waveforms and clinical risk factors can improve prediction of oCAD in CCD compared with risk-factor based models. Prospective research is warranted to determine whether incorporating DL methods in ECG analysis improves diagnosis of oCAD and outcomes in CCD.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 32 条
[1]   Emerging ECG methods for acute coronary syndrome detection: Recommendations & future opportunities [J].
Al-Zaiti, Salah ;
Macleod, Robert ;
Van Dam, Peter ;
Smith, Stephen W. ;
Birnbaum, Yochai .
JOURNAL OF ELECTROCARDIOLOGY, 2022, 74 :65-72
[2]   Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram [J].
Al-Zaiti S. ;
Besomi L. ;
Bouzid Z. ;
Faramand Z. ;
Frisch S. ;
Martin-Gill C. ;
Gregg R. ;
Saba S. ;
Callaway C. ;
Sejdić E. .
Nature Communications, 11 (1)
[3]   Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction [J].
Al-Zaiti, Salah S. ;
Martin-Gill, Christian ;
Zegre-Hemsey, Jessica K. ;
Bouzid, Zeineb ;
Faramand, Ziad ;
Alrawashdeh, Mohammad O. ;
Gregg, Richard E. ;
Helman, Stephanie ;
Riek, Nathan T. ;
Kraevsky-Phillips, Karina ;
Clermont, Gilles ;
Akcakaya, Murat ;
Sereika, Susan M. ;
Van Dam, Peter ;
Smith, Stephen W. ;
Birnbaum, Yochai ;
Saba, Samir ;
Sejdic, Ervin ;
Callaway, Clifton W. .
NATURE MEDICINE, 2023, 29 (07) :1804-+
[4]   Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association [J].
Armoundas, Antonis A. ;
Narayan, Sanjiv M. ;
Arnett, Donna K. ;
Spector-Bagdady, Kayte ;
Bennett, Derrick A. ;
Celi, Leo Anthony ;
Friedman, Paul A. ;
Gollob, Michael H. ;
Hall, Jennifer L. ;
Kwitek, Anne E. ;
Lett, Elle ;
Menon, Bijoy K. ;
Sheehan, Katherine A. ;
Al-Zaiti, Salah S. .
CIRCULATION, 2024, 149 (14) :e1028-e1050
[5]   A Comparison of the Updated Diamond-Forrester, CAD Consortium, and CONFIRM History-Based Risk Scores for Predicting Obstructive Coronary Artery Disease in Patients With Stable Chest Pain The SCOT-HEART Coronary CTA Cohort [J].
Baskaran, Lohendran ;
Danad, Ibrahim ;
Gransar, Heidi ;
Hartaigh, Briain O. ;
Schulman-Marcus, Joshua ;
Lin, Fay Y. ;
Pena, Jessica M. ;
Hunter, Amanda ;
Newby, David E. ;
Adamson, Philip D. ;
Min, James K. .
JACC-CARDIOVASCULAR IMAGING, 2019, 12 (07) :1392-1400
[6]  
Benjamin EJ, 2018, CIRCULATION, V137, pE67, DOI [10.1161/CIR.0000000000000558, 10.1161/CIR.0000000000000485, 10.1161/CIR.0000000000000530]
[7]   ECG Diagnosis and Classification of Acute Coronary Syndromes [J].
Birnbaum, Yochai ;
Wilson, James Michael ;
Fiol, Miquel ;
Bayes de Luna, Antonio ;
Eskola, Markku ;
Nikus, Kjell .
ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2014, 19 (01) :4-14
[8]   Disparities in patients presenting to the emergency department with potential acute coronary syndrome: It matters if you are Black or White [J].
DeVon, Holli A. ;
Burke, Larisa A. ;
Nelson, Heather ;
Zerwic, Julie J. ;
Riley, Barth .
HEART & LUNG, 2014, 43 (04) :270-277
[9]   Cardiovascular Disease in Women: Clinical Perspectives [J].
Garcia, Mariana ;
Mulvagh, Sharon L. ;
Merz, C. Noel Bairey ;
Buring, Julie E. ;
Manson, JoAnn E. .
CIRCULATION RESEARCH, 2016, 118 (08) :1273-1293
[10]   Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts [J].
Genders, Tessa S. S. ;
Steyerberg, Ewout W. ;
Hunink, M. G. Myriam ;
Nieman, Koen ;
Galema, Tjebbe W. ;
Mollet, Nico R. ;
de Feyter, Pim J. ;
Krestin, Gabriel P. ;
Alkadhi, Hatem ;
Leschka, Sebastian ;
Desbiolles, Lotus ;
Meijs, Matthijs F. L. ;
Cramer, Maarten J. ;
Knuuti, Juhani ;
Kajander, Sami ;
Bogaert, Jan ;
Goetschalckx, Kaatje ;
Cademartiri, Filippo ;
Maffei, Erica ;
Martini, Chiara ;
Seitun, Sara ;
Aldrovandi, Annachiara ;
Wildermuth, Simon ;
Stinn, Bjoern ;
Fornaro, Juergen ;
Feuchtner, Gudrun ;
De Zordo, Tobias ;
Auer, Thomas ;
Plank, Fabian ;
Friedrich, Guy ;
Pugliese, Francesca ;
Petersen, Steffen E. ;
Davies, L. Ceri ;
Schoepf, U. Joseph ;
Rowe, Garrett W. ;
van Mieghem, Carlos A. G. ;
van Driessche, Luc ;
Sinitsyn, Valentin ;
Gopalan, Deepa ;
Nikolaou, Konstantin ;
Bamberg, Fabian ;
Cury, Ricardo C. ;
Battle, Juan ;
Maurovich-Horvat, Pal ;
Bartykowszki, Andrea ;
Merkely, Bela ;
Becker, David ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Dewey, Marc .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 344