Towards Optimizing Neural Network-Based Quantification for NMR Metabolomics

被引:0
作者
Johnson, Hayden [1 ]
Tipirneni-Sajja, Aaryani [1 ,2 ]
机构
[1] Univ Memphis, Dept Biomed Engn, Memphis, TN 38152 USA
[2] Univ Houston, Dept Biomed Engn, Houston, TX 77004 USA
基金
美国国家科学基金会;
关键词
NMR spectroscopy; convolutional neural network; multi-layered perceptron; transformer; low-field NMR; METABOLITES;
D O I
10.3390/metabo15040249
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Quantification of metabolites from nuclear magnetic resonance (NMR) spectra in an accurate, high-throughput manner requires effective data processing tools. Neural networks are relatively underexplored in quantitative NMR metabolomics despite impressive speed and throughput compared to more conventional peak-fitting metabolomics software. Methods: This work investigates practices for dataset and model development in the task of metabolite quantification directly from simulated NMR spectra for three neural network models: the multi-layered perceptron, the convolutional neural network, and the transformer. Model architectures, training parameters, and training datasets are optimized before comparing each model on simulated 400-MHz 1H-NMR spectra of complex mixtures with 8, 44, or 86 metabolites to quantify in spectra ranging from simple to highly complex and overlapping peaks. The optimized models were further validated on spectra at 100- and 800-MHz. Results: The transformer was the most effective network for NMR metabolite quantification, especially as the number of metabolites per spectra increased or target concentrations were low or had a large dynamic range. Further, the transformer was able to accurately quantify metabolites in simulated spectra from 100-MHz up to 800-MHz. Conclusions: The methods developed in this work reveal that transformers have the potential to accurately perform fully automated metabolite quantification in real-time and, with further development with experimental data, could be the basis for automated quantitative NMR metabolomics software.
引用
收藏
页数:19
相关论文
共 47 条
[11]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, 10.48550/arXiv.2010.11929]
[12]  
Dubossarsky H., 2024, arXiv, DOI arXiv:2401.14040
[13]   Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra [J].
Hansen, D. Flemming .
JOURNAL OF BIOMOLECULAR NMR, 2019, 73 (10-11) :577-585
[14]   Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN [J].
Hao, Jie ;
Liebeke, Manuel ;
Astle, William ;
De Iorio, Maria ;
Bundy, Jacob G. ;
Ebbels, Timothy M. D. .
NATURE PROTOCOLS, 2014, 9 (06) :1416-1427
[15]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[16]   Nmrglue: an open source Python']Python package for the analysis of multidimensional NMR data [J].
Helmus, Jonathan J. ;
Jaroniec, Christopher P. .
JOURNAL OF BIOMOLECULAR NMR, 2013, 55 (04) :355-367
[17]   Quantification of human brain metabolites from in vivo 1H NMR magnitude spectra using automated artificial neural network analysis [J].
Hiltunen, Y ;
Kaartinen, J ;
Pulkkinen, J ;
Häkkinen, AM ;
Lundbom, N ;
Kauppinen, RA .
JOURNAL OF MAGNETIC RESONANCE, 2002, 154 (01) :1-5
[18]  
hmdb.ca, HMDB Metabocard for Alpha-D-Glucose (HMDB0003345)
[19]   Explainable AI to Facilitate Understanding of Neural Network-Based Metabolite Profiling Using NMR Spectroscopy [J].
Johnson, Hayden ;
Tipirneni-Sajja, Aaryani .
METABOLITES, 2024, 14 (06)
[20]   Rapid and automated lipid profiling by nuclear magnetic resonance spectroscopy using neural networks [J].
Johnson, Hayden ;
Puppa, Melissa ;
van der Merwe, Marie ;
Tipirneni-Sajja, Aaryani .
NMR IN BIOMEDICINE, 2023, 36 (11)