Mapping trends and analyzing key themes in low-cost sensors for air quality monitoring

被引:0
作者
Alhasa, Kemal Maulana [1 ]
Yulinawati, Hernani [2 ]
Kurnia, Deni [3 ]
Wahyono, Heru Dwi [1 ]
Yudo, Satmoko [1 ]
Kustianto, Irwan [1 ]
Endi, Dodi Rusjadi Tatang [1 ]
机构
[1] Natl Res & Innovat Agcy, Res Org Life Sci & Environm, Res Ctr Environm & Clean Technol, Tangerang Selatan, Indonesia
[2] Univ Trisakti, Fac Landscape Architecture & Environm Technol, Dept Environm Engn, Jakarta, Indonesia
[3] Politekn Enjinering Indorama, Mechatron Engn Dept, Purwakarta, Indonesia
关键词
Low-cost sensors; Air quality monitoring; IoT integration; Calibration techniques; GAS SENSORS; FIELD-EVALUATION; ELECTROCHEMICAL SENSORS; CALIBRATION; PERFORMANCE; NETWORK; POLLUTION; COMMUNITY; SCIENCE; IMPROVE;
D O I
10.1007/s12145-025-01927-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The increasing concern over air pollution has intensified the need for efficient air quality monitoring solutions. Low-cost sensors (LCSs) have emerged as a promising tool to complement traditional monitoring systems due to their cost-effectiveness and scalability, enabling detailed spatial and temporal data collection, albeit often requiring calibration to ensure data reliability. This study applies bibliometric and content analysis on 986 publications (1970-2023) to identify research trends, collaborations, and emerging themes in LCSs technology. Four key themes were found: Community-Based Monitoring, IoT Integration, Indoor Air Quality Assessment, and Advanced Calibration Techniques. Recent trends highlight the growing integration of IoT, AI, and machine learning to improve sensor calibration, real-time monitoring, and spatial analysis. While LCSs play a vital role in addressing air pollution challenges, enhancing sensor accuracy and integrating LCSs data with regulatory systems, UAVs, and satellites remains crucial for improved air quality management.
引用
收藏
页数:36
相关论文
共 222 条
[61]  
Esposito E, 2018, Stochastic comparison of machine learning approaches to calibration of mobile air quality monitors, V1, DOI [10.1007/978-3-319-55077-0, DOI 10.1007/978-3-319-55077-0]
[62]   AI-IoT Low-Cost Pollution-Monitoring Sensor Network to Assist Citizens with Respiratory Problems [J].
Felici-Castell, Santiago ;
Segura-Garcia, Jaume ;
Perez-Solano, Juan J. ;
Fayos-Jordan, Rafael ;
Soriano-Asensi, Antonio ;
Alcaraz-Calero, Jose M. .
SENSORS, 2023, 23 (23)
[63]   Design, fabrication, and calibration of the Building EnVironment and Occupancy (BEVO) Beacon: A rapidly-deployable and affordable indoor environmental quality monitor [J].
Fritz, Hagen ;
Bastami, Sepehr ;
Lin, Calvin ;
Nweye, Kingsley ;
To, Tung ;
Chen, Lauren ;
Le, Dung ;
Ibarra, Angelina ;
Zhang, Wendy ;
Park, June Young ;
Waites, William ;
Tang, Mengjia ;
Misztal, Pawel ;
Novoselac, Atila ;
Thomaz, Edison ;
Kinney, Kerry ;
Nagy, Zoltan .
BUILDING AND ENVIRONMENT, 2022, 222
[64]   Just good enough data: Figuring data citizenships through air pollution sensing and data stories [J].
Gabrys, Jennifer ;
Pritchard, Helen ;
Barratt, Benjamin .
BIG DATA & SOCIETY, 2016, 3 (02)
[65]   Laboratory and field evaluation of three low-cost particulate matter sensors [J].
Ghamari, Mohammad ;
Soltanpur, Cinna ;
Rangel, Pablo ;
Groves, William A. ;
Kecojevic, Vladislav .
IET WIRELESS SENSOR SYSTEMS, 2022, 12 (01) :21-32
[66]   From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors [J].
Giordano, Michael R. ;
Malings, Carl ;
Pandis, Spyros N. ;
Presto, Albert A. ;
McNeill, V. F. ;
Westervelt, Daniel M. ;
Beekmann, Matthias ;
Subramanian, R. .
JOURNAL OF AEROSOL SCIENCE, 2021, 158
[67]   Preparation of electrochemical sensor assisted unmanned aerial vehicles system for SO2, O3, NO2, CO and PM2.5/PM10 detection in air [J].
Guan, Rongqiang ;
Yu, Jing ;
Li, Mingyue ;
Yan, Jingling ;
Liu, Zichao .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (10) :1-9
[68]   Ambient air pollutant monitoring and analysis protocol for low and middle income countries: An element of comprehensive urban air quality management framework [J].
Gulia, Sunil ;
Khanna, Isha ;
Shukla, Komal ;
Khare, Mukesh .
ATMOSPHERIC ENVIRONMENT, 2020, 222
[69]   Impact of California Fires on Local and Regional Air Quality: The Role of a Low-Cost Sensor Network and Satellite Observations [J].
Gupta, P. ;
Doraiswamy, P. ;
Levy, R. ;
Pikelnaya, O. ;
Maibach, J. ;
Feenstra, B. ;
Polidori, Andrea ;
Kiros, F. ;
Mills, K. C. .
GEOHEALTH, 2018, 2 (06) :172-181
[70]  
Gurudath SV, 2021, INT J ADV COMPUT SC, V12, P854