Compact Superconducting Kinetic Inductance Traveling Wave Parametric Amplifiers With On-Chip rf Components

被引:0
作者
Howe, L. [1 ]
Giachero, A. [1 ]
Vissers, M. [1 ]
Wheeler, J. [1 ]
Austermann, J. [1 ]
Hubmayr, J. [1 ]
Ullom, J. [1 ]
机构
[1] Natl Inst Stand & Technol, Quantum Sensors Div, Boulder, CO 80305 USA
基金
美国国家航空航天局;
关键词
Noise; Superconducting microwave devices; Gain; Inductance; Kinetic theory; Superconducting device noise; System-on-chip; Microwave amplifiers; Superconducting epitaxial layers; Quantum sensing; Compact; efficient; kinetic inductance; super-conducting; traveling wave parametric amplifier; quantum-limit; quantum computing;
D O I
10.1109/TASC.2025.3553466
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum computing systems and fundamental physics experiments using superconducting technologies frequently require signal amplification chains operating near the quantum limit of added noise. Both Josephson parametric amplifiers (JPAs) and traveling wave parametric amplifiers (TWPAs) have been used as first-stage amplifiers to enable readout chains operating within a few quanta or less of the quantum limit. These devices are also presently entering the commercial industry. However, nearly all demonstrations and existing products require bulky external microwave components for interconnection and application of requisite biases. These components - cabling interconnects, bias tees, directional couplers, and diplexers - increase the overall amplifier footprint, installation complexity, and reduce already limited available cryogenic volumes. Additionally, these components introduce loss and reflections which impact the measurement efficiency and readout system noise performance; thus making it more difficult to operate near the quantum limit. Here we present the design and validation of microfabricated bias tees and directional couplers for operating three-wave mixing kinetic inductance TWPAs (KITs). We report the performance of KITs integrated with the microfabricated rf components. Using these devices we demonstrate reduction in the amplifier installation footprint by a factor of nearly five and elimination of all external, lossy microwave components previously required to operate a KIT. Our device displays a 2.8 GHz 3 dB bandwidth with a median true gain of 17.5 dB and median system noise of 3.4 quanta. These efforts represent the first full integration of all rf components mandatory for TWPA operation on-chip. Our results mark significant progress towards the miniaturization and simplification of parametric amplifier setups and will aid in their more widespread applicability.
引用
收藏
页数:7
相关论文
共 27 条
[1]   A microwave SQUID multiplexer optimized for bolometric applications [J].
Dober, B. ;
Ahmed, Z. ;
Arnold, K. ;
Becker, D. T. ;
Bennett, D. A. ;
Connors, J. A. ;
Cukierman, A. ;
D'Ewart, J. M. ;
Duff, S. M. ;
Dusatko, J. E. ;
Frisch, J. C. ;
Gard, J. D. ;
Henderson, S. W. ;
Herbst, R. ;
Hilton, G. C. ;
Hubmayr, J. ;
Li, Y. ;
Mates, J. A. B. ;
McCarrick, H. ;
Reintsema, C. D. ;
Silva-Feaver, M. ;
Ruckman, L. ;
Ullom, J. N. ;
Vale, L. R. ;
Van Winkle, D. D. ;
Vasquez, J. ;
Wang, Y. ;
Young, E. ;
Yu, C. ;
Zheng, K. .
APPLIED PHYSICS LETTERS, 2021, 118 (06)
[2]  
Elsbury M. M., 2010, Broadband microwave integrated circuits for voltage standard applications
[3]   Kinetic Inductance Traveling Wave Amplifier Designs for Practical Microwave Readout Applications [J].
Giachero, A. ;
Vissers, M. ;
Wheeler, J. ;
Howe, L. ;
Gao, J. ;
Austermann, J. ;
Hubmayr, J. ;
Nucciotti, A. ;
Ullom, J. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2024, 215 (3-4) :152-160
[4]   Characterization of NbTiN Films With Thicknesses Below 20 nm for Low Power Kinetic Inductance Amplifiers [J].
Giachero, A. ;
Vissers, M. R. ;
Wheeler, J. D. ;
Malnou, M. ;
Austermann, J. E. ;
Hubmayr, J. ;
Nucciotti, A. ;
Ullom, J. N. ;
Gao, J. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
[5]  
Howe L., 2025, U. S. Patent Pending, Patent No. [63/758,922, 63758922]
[6]   Josephson parametric amplifier with Chebyshev gain profile and high saturation [J].
Kaufman, Ryan ;
White, Theodore ;
Dykman, Mark I. ;
Iorio, Andrea ;
Sterling, George ;
Hong, Sabrina ;
Opremcak, Alex ;
Bengtsson, Andreas ;
Faoro, Lara ;
Bardin, Joseph C. ;
Burger, Tim ;
Gasca, Robert ;
Naaman, Ofer .
PHYSICAL REVIEW APPLIED, 2023, 20 (05)
[7]   Investigating the effects of sum-frequency conversions and surface impedance uniformity in traveling wave superconducting parametric amplifiers [J].
Klimovich, Nikita ;
Wood, Samuel ;
Day, Peter K. ;
Tan, Boon-Kok .
JOURNAL OF APPLIED PHYSICS, 2024, 135 (12)
[8]   Wideband directional coupler based on zigzag coupling and wedge structure for isolation enhancement [J].
Li, Jia-Lin ;
Wang, Zong-Lin ;
Yin, Si-Yu ;
Twumasi, Baidenger Agyekum ;
Song, Kexin ;
Ji, Cheng-Gao .
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2022, 32 (12)
[9]   Broadband Solenoidal Haloscope for Terahertz Axion Detection [J].
Liu, Jesse ;
Dona, Kristin ;
Hoshino, Gabe ;
Knirck, Stefan ;
Kurinsky, Noah ;
Malaker, Matthew ;
Miller, David W. ;
Sonnenschein, Andrew ;
Awida, Mohamed H. ;
Barry, Peter S. ;
Berggren, Karl K. ;
Bowring, Daniel ;
Carosi, Gianpaolo ;
Chang, Clarence ;
Chou, Aaron ;
Khatiwada, Rakshya ;
Lewis, Samantha ;
Li, Juliang ;
Nam, Sae Woo ;
Noroozian, Omid ;
Zhou, Tony X. .
PHYSICAL REVIEW LETTERS, 2022, 128 (13)
[10]  
Malnou M, 2024, Arxiv, DOI arXiv:2406.19476