Colding-Minicozzi entropies in Cartan-Hadamard manifolds

被引:0
作者
Bernstein, Jacob [1 ]
Bhattacharya, Arunima [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, 3400 Charles St, Baltimore, MD 21218 USA
[2] Univ North Carolina Chapel Hill, Dept Math, Phillips Hall, Chapel Hill, NC 27599 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2025年
基金
美国国家科学基金会;
关键词
MEAN-CURVATURE FLOW; CLOSED HYPERSURFACES; HYPERBOLIC SPACE; HEAT KERNEL; SINGULARITIES; REGULARITY; PROPERTY; BEHAVIOR; SET;
D O I
10.1515/crelle-2025-0032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a family of functionals defined on the set of submanifolds of Cartan-Hadamard manifolds which generalize the Colding-Minicozzi entropy of submanifolds of Euclidean space. We show these functionals are monotone under mean curvature flow under natural conditions. As a consequence, we obtain sharp lower bounds on these entropies for certain closed hypersurfaces and observe a novel rigidity phenomenon.
引用
收藏
页数:30
相关论文
共 43 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175, DOI 10.4310/jdg/1214440025
[2]  
AZENCOTT R, 1974, B SOC MATH FR, V102, P193
[3]   Minimal surfaces and Colding-Minicozzi entropy in complex hyperbolic space [J].
Bernstein, Jacob ;
Bhattacharya, Arunima .
GEOMETRIAE DEDICATA, 2024, 218 (03)
[4]   Rigidity properties of Colding-Minicozzi entropies [J].
Bernstein, Jacob .
ADVANCED NONLINEAR STUDIES, 2024, 24 (01) :155-166
[5]   A SHARP ISOPERIMETRIC PROPERTY OF THE RENORMALIZED AREA OF A MINIMAL SURFACE IN HYPERBOLIC SPACE [J].
Bernstein, Jacob .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) :4487-4502
[6]   CLOSED HYPERSURFACES OF LOW ENTROPY IN R4 ARE ISOTOPICALLY TRIVIAL [J].
Bernstein, Jacob ;
Wang, L. U. .
DUKE MATHEMATICAL JOURNAL, 2022, 171 (07) :1531-1558
[7]   Colding Minicozzi entropy in hyperbolic space [J].
Bernstein, Jacob .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 210
[8]  
Bernstein J, 2018, MATH RES LETT, V25, P347, DOI 10.4310/MRL.2018.v25.n2.a1
[9]   Topology of closed hypersurfaces of small entropy [J].
Bernstein, Jacob ;
Wang, Lu .
GEOMETRY & TOPOLOGY, 2018, 22 (02) :1109-1141
[10]   A TOPOLOGICAL PROPERTY OF ASYMPTOTICALLY CONICAL SELF-SHRINKERS OF SMALL ENTROPY [J].
Bernstein, Jacob ;
Wang, Lu .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (03) :403-435