The minimal model program for arithmetic surfaces enriched by a Brauer class

被引:0
作者
Chan, Daniel [1 ]
Ingalls, Colin [2 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Carleton Univ, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Brauer group; Minimal model program; Arithmetic surfaces;
D O I
10.1016/j.jalgebra.2025.03.047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the noncommutative minimal model program for orders on arithmetic surfaces, or equivalently, arithmetic surfaces enriched by a Brauer class beta. When beta has prime index p>5, we show the classical theory extends with analogues of existence of terminal resolutions, Castelnuovo contraction and Zariski factorisation. We also classify beta-terminal surfaces and Castelnuovo contractions, and discover new unexpected behaviour. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:475 / 511
页数:37
相关论文
共 15 条
[1]   SOME ELEMENTARY EXAMPLES OF UNIRATIONAL VARIETIES WHICH ARE NOT RATIONAL [J].
ARTIN, M ;
MUMFORD, D .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1972, 25 (JUL) :75-&
[2]  
Bhatt B, 2021, Arxiv, DOI arXiv:2012.15801
[3]   The minimal model program for orders over surfaces [J].
Chan, D ;
Ingalls, C .
INVENTIONES MATHEMATICAE, 2005, 161 (02) :427-452
[4]  
Chan DN, 2017, Arxiv, DOI arXiv:1707.00834
[5]  
Cox D. A., 2011, Grad. Stud. Math., V124
[6]  
Fulton William, 1993, Annals of Mathematics Studies, V131
[7]  
GROTHENDIECK A, 1968, ADV STUD PURE MATH, V3, P88
[8]  
Grothendieck Alexander, 1968, Adv. Stud. Pure Math., V3, P67
[9]  
Kollar J., 1998, BIRATIONAL GEOMETRY, V134
[10]  
Kollar Janos., 1994, Birational geometry of log surfaces