LIU-NET: lightweight Inception U-Net for efficient brain tumor segmentation from multimodal 3D MRI images

被引:0
|
作者
Shahid, Gul e Sehar [1 ]
Ahmad, Jameel [2 ]
Warraich, Chaudary Atif Raza [3 ]
Ksibi, Amel [4 ]
Alsenan, Shrooq [4 ]
Arshad, Arfan [2 ]
Raza, Rehan [5 ]
Shaikh, Zaffar Ahmed [6 ,7 ]
机构
[1] Univ Management & Technol, Dept Artificial Intelligence, Lahore, Pakistan
[2] Univ Management & Technol, Sch Syst & Technol, Dept Comp Sci, Lahore, Pakistan
[3] COMSATS Inst Informat Technol, Dept Comp Sci, Lahore, Pakistan
[4] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh, Saudi Arabia
[5] Murdoch Univ, Sch Informat Technol, Perth, Australia
[6] Benazir Bhutto Shaheed Univ Lyari, Dept Comp Sci & Informat Technol, Karachi, Pakistan
[7] Ecole Polytech Fed Lausanne, Sch Engn, Lausanne, Switzerland
关键词
3D MRI; U-NET architecture; Deep learning; BraTS; 2021; 2020; Medical image analysis; Brain tumor segmentation; Inception-style blocks; CONVOLUTION;
D O I
10.7717/peerj-cs.2787
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmenting brain tumors is a critical task in medical imaging that relies on advanced deep-learning methods. However, effectively handling complex tumor regions requires more comprehensive and advanced strategies to overcome challenges such as computational complexity, the gradient vanishing problem, and variations in size and visual impact. To overcome these challenges, this research presents a novel and computationally efficient method termed lightweight Inception U-Net (LIU-Net) for the accurate brain tumor segmentation task. LIU-Net balances model complexity and computational load to provide consistent performance and uses Inception blocks to capture features at different scales, which makes it relatively lightweight. Its capability to efficiently and precisely segment brain tumors, especially in challenging-to-detect regions, distinguishes it from existing models. This Inception-style convolutional block assists the model in capturing multiscale features while preserving spatial information. Moreover, the proposed model utilizes a combination of Dice loss and Focal loss to handle the class imbalance issue. The proposed LIU-Net model was evaluated on the benchmark BraTS 2021 dataset, where it generates remarkable outcomes with a Dice score of 0.8121 for the enhancing tumor (ET) region, 0.8856 for the whole tumor (WT) region, and 0.8444 for the tumor core (TC) region on the test set. To evaluate the robustness of the proposed architecture, LIU-Net was cross-validated on an external cohort BraTS 2020 dataset. The proposed method obtained a Dice score of 0.8646 for the ET region, 0.9027 for the WT region, and 0.9092 for the TC region on the external cohort BraTS 2020 dataset. These results highlight the effectiveness of integrating the Inception blocks into the U-Net architecture, making it a promising candidate for medical image segmentation.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] GAIR-U-Net: 3D guided attention inception residual u-net for brain tumor segmentation using multimodal MRI images
    Rutoh, Evans Kipkoech
    Guang, Qin Zhi
    Bahadar, Noor
    Raza, Rehan
    Hanif, Muhammad Shehzad
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (06)
  • [2] dResU-Net: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI
    Raza, Rehan
    Bajwa, Usama Ijaz
    Mehmood, Yasar
    Anwar, Muhammad Waqas
    Jamal, M. Hassan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [3] Sub-region Segmentation of Brain Tumors from Multimodal MRI Images Using 3D U-Net
    Ali, Ammar Alhaj
    Katta, Rasin
    Jasek, Roman
    Chramco, Bronislav
    Krayem, Said
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 357 - 367
  • [4] Brain Tumor Segmentation from 3D MRI Scans Using U-Net
    Montaha S.
    Azam S.
    Rakibul Haque Rafid A.K.M.
    Hasan M.Z.
    Karim A.
    SN Computer Science, 4 (4)
  • [6] 3D AIR-UNet: attention–inception–residual-based U-Net for brain tumor segmentation from multimodal MRI
    Vani Sharma
    Mohit Kumar
    Arun Kumar Yadav
    Neural Computing and Applications, 2025, 37 (16) : 9969 - 9990
  • [7] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [8] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [9] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399
  • [10] Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images
    Jun, Wen
    Xu, Haoxiang
    Wang, Zhang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 183 - 193