Breviscapine Attenuates Lipopolysaccharide-Induced Airway Dysfunction in Normal Human Bronchial Epithelial Cells by Suppressing the TLR4/MyD88 Signaling Pathway

被引:0
|
作者
Zhao, Shaocong [1 ]
Li, Wanwan [1 ]
Zhao, Yanfeng [1 ]
Sun, Xiaomin [1 ]
机构
[1] Zhengzhou Univ, Henan Childrens Hosp, Zhengzhou Childrens Hosp, Resp Dept,Childrens Hosp, Zhengzhou, Peoples R China
关键词
breviscapine; inflammation; oxidative stress; pediatric asthma; TLR4/MyD88; pathway; ACUTE LUNG INJURY; CORONARY MICROEMBOLIZATION; ASTHMA; INFLAMMATION; APOPTOSIS; RATS;
D O I
10.1111/cbdd.70096
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pediatric asthma is a common chronic respiratory disorder characterized by airway inflammation and hyperresponsiveness. Breviscapine (Bre) is a natural flavonoid with a broad spectrum of pharmacological activities. Previous studies have found that Bre exerts a protective effect on inflammation in airway and lung tissues. However, the effect of Bre on asthma has not yet been reported. The effects of Bre on asthmatic airway dysfunction were investigated in lipopolysaccharide (LPS)-induced normal human bronchial epithelial cells (NHBEs). Cell viability was determined by CCK-8 assay. Secretion levels of cytokines (IL-1 beta and IL-6) and chemokine (MCP-1) in the supernatant of NHBEs were measured by using ELISA. Whether Bre could influence LPS-caused oxidative stress in NHBEs was evaluated by detecting malondialdehyde (MDA) production and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). RT-PCR was applied to determine the mRNA levels of mucin 5 AC (MUC5AC), collagen I (Col-I), and fibronectin (FN). Western blotting was performed to assess the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and TNF receptor associated factor 6 (TRAF6). To further confirm the role of TLR4/MyD88 signaling pathway, TLR4-overexpressing cells were constructed. Results showed that Bre attenuated LPS-induced inflammatory responses with decreased release of IL-1 beta, IL-6, and MCP-1 in NHBEs. The oxidative status in LPS-stimulated NHBEs was suppressed by Bre treatment, as shown by reduced MDA production and increased activities of SOD and GSH-Px. Bre also attenuated LPS-induced expression of MUC5AC, Col-I, and FN. LPS induced the activation of the TLR4/MyD88 signaling pathway in NHBEs, which could be reversed by Bre treatment. Additionally, overexpression of TLR4 lessened the protective effects of Bre on LPS-stimulated NHBEs. Overall, the foregoing results suggested that the TLR4/MyD88 signaling pathway mediated a critical protective effect of Bre on LPS-induced asthmatic airway dysfunction, which provided evidence for the potential usage of Bre for the treatment of asthma.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Euxanthone inhibits lipopolysaccharide-induced injury, inflammatory response, and MUC5AC hypersecretion in human airway epithelial cells by the TLR4/MyD88 pathway
    Shen, Wen
    Yin, Yuyao
    Li, Tiantian
    Cao, Gang
    JOURNAL OF APPLIED TOXICOLOGY, 2022, 42 (04) : 671 - 682
  • [2] Geniposidic acid protects lipopolysaccharide-induced acute lung injury via the TLR4/MyD88 signaling pathway in vitro and in vivo
    Fu, Hui
    Zhu, Hui
    IMMUNOPHARMACOLOGY AND IMMUNOTOXICOLOGY, 2022, 44 (06) : 984 - 992
  • [3] Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats
    Zhou, Jiayin
    Deng, Yuanyuan
    Li, Fei
    Yin, Caixia
    Shi, Jingshan
    Gong, Qihai
    BIOMEDICINE & PHARMACOTHERAPY, 2019, 111 : 315 - 324
  • [4] The regulatory effect of oxymatrine on the TLR4/MyD88/NF-κB signaling pathway in lipopolysaccharide-induced MS1 cells
    Lu Meili
    Zhang Qing
    Chen Kai
    Xu Wei
    Xiang Xiaohui
    Xia Shihai
    PHYTOMEDICINE, 2017, 36 : 153 - 159
  • [5] Gelsolin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Rats by Modulating TLR4/Myd88/NF-κB Signaling Pathway
    Fu, Hai-Yan
    Hu, Zhan-Sheng
    Dong, Xiao-Ting
    Zhou, Rong-Bin
    Du, Hong-Yang
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2022, 18 (03) : 511 - 521
  • [6] Oleacein Attenuates Lipopolysaccharide-Induced Inflammation in THP-1-Derived Macrophages by the Inhibition of TLR4/MyD88/NF-κB Pathway †
    Cirmi, Santa
    Maugeri, Alessandro
    Russo, Caterina
    Musumeci, Laura
    Navarra, Michele
    Lombardo, Giovanni Enrico
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
  • [7] Lipopolysaccharide induces skin scarring through the TLR4/Myd88 inflammatory signaling pathway in dermal fibroblasts
    Xu, Zhigang
    Cheng, Chuantao
    Zhang, Yangang
    Yang, Danyang
    Jing, Wenwen
    Liu, Xin
    Li, Xiaoli
    BURNS, 2023, 49 (08) : 1997 - 2006
  • [8] Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway
    Yao, Hong
    Hu, Changsheng
    Yin, Lianhong
    Tao, Xufeng
    Xu, Lina
    Qi, Yan
    Han, Xu
    Xu, Youwei
    Zhao, Yanyan
    Wang, Changyuan
    Peng, Jinyong
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2016, 36 : 132 - 141
  • [9] Eupatilin attenuates the inflammatory response induced by intracerebral hemorrhage through the TLR4/MyD88 pathway
    Fei, Xiaowei
    Chen, Chen
    Kai, Sun
    Fu, Xiaojun
    Man, Weitao
    Ding, Boyun
    Wang, Chongwu
    Xu, Ruxiang
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2019, 76
  • [10] Isoforskolin and forskolin attenuate lipopolysaccharide-induced inflammation through TLR4/MyD88/NF-κB cascades in human mononuclear leukocytes
    Du, Xiaohua
    Shi, Rui
    Wang, Youlan
    Wu, Wenjuang
    Sun, Shibo
    Dai, Zelan
    Chen, Chen
    Weng, Zhiying
    Li, Xian
    Liu, Qian
    Zhang, Liyan
    Saidian, Mayer
    Yang, Weimin
    PHYTOTHERAPY RESEARCH, 2019, 33 (03) : 602 - 609