Dynamic Supervised Principal Component Analysis for Classification

被引:0
作者
Ouyang, Wenbo [1 ]
Wu, Ruiyang [2 ]
Hao, Ning [1 ,3 ]
Zhang, Hao Helen [1 ,3 ]
机构
[1] Univ Arizona, GIDP Stat & Data Sci, Tucson, AZ USA
[2] CUNY, Baruch Coll, Paul H Chook Dept Informat Syst & Stat, New York, NY USA
[3] Univ Arizona, Dept Math, 617 N St Rita Ave, Tucson, AZ 85721 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Dimension reduction; Discriminant analysis; Gene expression data; High-dimensional data; Kernel smoothing; LINEAR DISCRIMINANT-ANALYSIS; COVARIANCE MATRICES;
D O I
10.1080/10618600.2025.2452935
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article introduces a novel framework for dynamic classification in high dimensional spaces, addressing the evolving nature of class distributions over time or other index variables. Traditional discriminant analysis techniques are adapted to learn dynamic decision rules with respect to the index variable. In particular, we propose and study a new supervised dimension reduction method employing kernel smoothing to identify the optimal subspace, and provide a comprehensive examination of this approach for both linear discriminant analysis and quadratic discriminant analysis. We illustrate the effectiveness of the proposed methods through numerical simulations and real data examples. The results show considerable improvements in classification accuracy and computational efficiency. This work contributes to the field by offering a robust and adaptive solution to the challenges of scalability and non-staticity in high-dimensional data classification. Supplementary materials for this article are available online.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations [J].
Bickel, PJ ;
Levina, E .
BERNOULLI, 2004, 10 (06) :989-1010
[2]   A Direct Estimation Approach to Sparse Linear Discriminant Analysis [J].
Cai, Tony ;
Liu, Weidong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) :1566-1577
[3]   A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables [J].
Chen, Jia ;
Li, Degui ;
Linton, Oliver .
JOURNAL OF ECONOMETRICS, 2019, 212 (01) :155-176
[4]   Dynamic Covariance Models [J].
Chen, Ziqi ;
Leng, Chenlei .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) :1196-1208
[5]   Gene Expression Omnibus: NCBI gene expression and hybridization array data repository [J].
Edgar, R ;
Domrachev, M ;
Lash, AE .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :207-210
[6]  
Fan JQ, 2012, J ROY STAT SOC B, V74, P745, DOI 10.1111/j.1467-9868.2012.01029.x
[7]   HIGH-DIMENSIONAL CLASSIFICATION USING FEATURES ANNEALED INDEPENDENCE RULES [J].
Fan, Jianqing ;
Fan, Yingying .
ANNALS OF STATISTICS, 2008, 36 (06) :2605-2637
[8]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188
[9]   Regularized linear discriminant analysis and its application in microarrays [J].
Guo, Yaqian ;
Hastie, Trevor ;
Tibshirani, Robert .
BIOSTATISTICS, 2007, 8 (01) :86-100
[10]   Sparsifying the Fisher linear discriminant by rotation [J].
Hao, Ning ;
Dong, Bin ;
Fan, Jianqing .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (04) :827-851