Application of natural mineral in round-the-clock solar-driven interfacial evaporation system: A review

被引:0
|
作者
Mu, Yunan [1 ]
Shuai, Pengfei [1 ]
Liao, Libing [1 ]
Gu, Xiaobin [2 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sal, Xining 810008, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2025年 / 13卷 / 03期
基金
北京市自然科学基金;
关键词
Mineral; Solar-driven interfacial evaporation; Photothermal conversion; Phase change material; Desalination; Water evaporation; PHASE-CHANGE MATERIAL; WATER DESALINATION; STEAM-GENERATION; CLIMATE-CHANGE; ONE-SUN; EFFICIENT; COMPOSITE; MEMBRANE; ENERGY; PERFORMANCE;
D O I
10.1016/j.jece.2025.116701
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, solar-driven interfacial evaporation (SIE) has gained widespread attention as an efficient seawater desalination technology. Among various materials that used for SIE system, natural mineral materials are one of the most important choices due to their high cost-effectiveness, wide availability and environmental friendliness. Notably, lot of studies have demonstrated that mineral materials can significantly enhance the performance of SIE systems in virtue of high adsorption capacity, thermal insulation, and mechanical strength. According to the three key components (the light absorber, the substrate, and the thermal storage device) of round-the-clock SIE systems, this review summarizes the start-of-the-art advancements in mineral-based SIE systems and highlights key strategies for their performance enhancement. Especially, the role of mineral materials in these SIE systems has been carefully analyzed and the relevant mechanisms have been revealed. Finally, the research gap and outlook in this field have also been identified. The review study aim to provide insights for the further development of mineral-based SIE systems.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Review of the progress of solar-driven interfacial water evaporation (SIWE) toward a practical approach
    Srishti, Apurba
    Sinhamahapatra, Apurba
    Kumar, Aditya
    ENERGY ADVANCES, 2023, 2 (05): : 574 - 605
  • [32] Solar-driven interfacial evaporation for sustainable desalination: Evaluation of current salt-resistant strategies
    Sun, Yuqing
    Tan, Xinyan
    Xiang, Bin
    Gong, Jingling
    Li, Jian
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [33] Solar-driven interfacial evaporation for water treatment: advanced research progress and challenges
    Li, Jiyan
    Jing, Yanju
    Xing, Guoyu
    Liu, Meichen
    Cui, Yang
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (36) : 18470 - 18489
  • [34] Recent progress in solar-driven interfacial evaporation: Evaporators, condensers, applications and prospects
    Liu, Jian
    Zhang, Sai
    Wang, Junyan
    Lan, Qiao
    DESALINATION, 2025, 597
  • [35] Activated pulverized coal membrane for effective solar-driven interfacial evaporation and desalination
    Wang, Jiacheng
    Wang, Ruilin
    Geng, Yang
    Li, Yanjin
    Li, Jianbo
    Qiu, Jing
    Li, Meng
    CHEMICAL ENGINEERING SCIENCE, 2023, 265
  • [36] A low-cost carbonized Enteromorpha-coated wood for highly efficient solar-driven interfacial water evaporation
    Qiu, Yongfeng
    Lu, Hui
    Chen, Cairong
    COLLOID AND POLYMER SCIENCE, 2024, 302 (01) : 71 - 78
  • [37] Experimental study of the solar-driven interfacial evaporation based on a novel magnetic nano solar absorber
    Yang, Ying
    Xu, Guoying
    Huang, Shifang
    Yin, Yonggao
    APPLIED THERMAL ENGINEERING, 2022, 217
  • [38] System integration for solar-driven interfacial desalination
    Dang, Chenyang
    Nie, Huijie
    Cao, Xiangkun Elvis
    Cao, Yunteng
    Liu, Lujia
    Zhu, Xiaoqing
    Zhu, Qixuan
    Zhu, Liping
    Xu, Guiyin
    Zhu, Meifang
    DEVICE, 2024, 2 (05):
  • [39] Electrically Conductive Carbon Aerogels with High Salt-Resistance for Efficient Solar-Driven Interfacial Evaporation
    Li, Lingxiao
    Hu, Tao
    Li, An
    Zhang, Junping
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) : 32143 - 32153
  • [40] Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination
    Zang, Linlin
    Sun, Liguo
    Zhang, Shaochun
    Finnerty, Casey
    Kim, Albert
    Ma, Jun
    Mi, Baoxia
    CHEMICAL ENGINEERING JOURNAL, 2021, 422