Application of natural mineral in round-the-clock solar-driven interfacial evaporation system: A review

被引:0
|
作者
Mu, Yunan [1 ]
Shuai, Pengfei [1 ]
Liao, Libing [1 ]
Gu, Xiaobin [2 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sal, Xining 810008, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2025年 / 13卷 / 03期
基金
北京市自然科学基金;
关键词
Mineral; Solar-driven interfacial evaporation; Photothermal conversion; Phase change material; Desalination; Water evaporation; PHASE-CHANGE MATERIAL; WATER DESALINATION; STEAM-GENERATION; CLIMATE-CHANGE; ONE-SUN; EFFICIENT; COMPOSITE; MEMBRANE; ENERGY; PERFORMANCE;
D O I
10.1016/j.jece.2025.116701
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, solar-driven interfacial evaporation (SIE) has gained widespread attention as an efficient seawater desalination technology. Among various materials that used for SIE system, natural mineral materials are one of the most important choices due to their high cost-effectiveness, wide availability and environmental friendliness. Notably, lot of studies have demonstrated that mineral materials can significantly enhance the performance of SIE systems in virtue of high adsorption capacity, thermal insulation, and mechanical strength. According to the three key components (the light absorber, the substrate, and the thermal storage device) of round-the-clock SIE systems, this review summarizes the start-of-the-art advancements in mineral-based SIE systems and highlights key strategies for their performance enhancement. Especially, the role of mineral materials in these SIE systems has been carefully analyzed and the relevant mechanisms have been revealed. Finally, the research gap and outlook in this field have also been identified. The review study aim to provide insights for the further development of mineral-based SIE systems.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Solar-driven interfacial evaporation
    Tao, Peng
    Ni, George
    Song, Chengyi
    Shang, Wen
    Wu, Jianbo
    Zhu, Jia
    Chen, Gang
    Deng, Tao
    NATURE ENERGY, 2018, 3 (12): : 1031 - 1041
  • [2] Patterned Surfaces for Solar-Driven Interfacial Evaporation
    Luo, Yini
    Fu, Benwei
    Shen, Qingchen
    Hao, Wei
    Xu, Jiale
    Min, Mengdie
    Liu, Yanming
    An, Shun
    Song, Chengyi
    Tao, Peng
    Wu, Jianbo
    Shang, Wen
    Deng, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (07) : 7584 - 7590
  • [3] Recent progress of solar-driven interfacial evaporation based on organic semiconductor materials
    Wu, Jia-Li
    Han, Sheng-Jie
    Xu, Lei
    Wang, Zhen-Yu
    Labiadh, Lazhar
    Fu, Ming-Lai
    Yuan, Baoling
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 326
  • [4] Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications
    Hou, Lanlan
    Li, Shuai
    Qi, Yingqun
    Liu, Jingchong
    Cui, Zhimin
    Liu, Xiaofei
    Zhang, Ying
    Wang, Nu
    Zhao, Yong
    ACS NANO, 2025, 19 (10) : 9636 - 9683
  • [5] Solar-driven interfacial evaporation: materials design and device assembly
    Balu, Satheesh kumar
    Cheng, Sijie
    Latthe, Sanjay S.
    Xing, Ruimin
    Liu, Shanhu
    ENERGY MATERIALS, 2024, 4 (02):
  • [6] Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications
    Zhu, Liangliang
    Gao, Minmin
    Peh, Connor Kang Nuo
    Ho, Ghim Wei
    NANO ENERGY, 2019, 57 : 507 - 518
  • [7] An overview of photothermal materials for solar-driven interfacial evaporation
    Fang, Yiming
    Gao, Huimin
    Cheng, Kaiting
    Bai, Liang
    Li, Zhengtong
    Zhao, Yadong
    Xu, Xingtao
    CHINESE CHEMICAL LETTERS, 2025, 36 (03)
  • [8] Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination
    Pan, Cheng
    Yang, Yawei
    Xie, Mingze
    Deng, Qingyuan
    Cheng, Xiang
    Wang, Xianlei
    Zhao, Shihan
    Wei, Yumeng
    Que, Wenxiu
    MEMBRANES, 2022, 12 (09)
  • [9] Recent research advances in efficient solar-driven interfacial evaporation
    Zhou, Mingyu
    Zhang, Lijing
    Tao, Shengyang
    Li, Renyuan
    Wang, Yuchao
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [10] Solar-driven interfacial evaporation: Research advances in structural design
    Sun, Yuqing
    Tan, Xinyan
    Yuan, Xin
    Li, Jian
    CHEMICAL ENGINEERING JOURNAL, 2024, 495