Suspension Parameter Identification Based on Synthetic Data

被引:0
作者
de Hoyos Fernandez de Cordova, Alfonso [1 ]
Luis Olazagoitia, Jose [2 ]
Gijon-Rivera, Carlos [3 ]
Gomez-Lendinez, Daniel [1 ]
Barea del Cerro, Rafael [1 ]
机构
[1] Univ Nebrija, Escuela Politecn Super, Calle Santa Cruz Marcenado 27, Madrid 28015, Spain
[2] Univ Design Innovat & Technol UDIT, Fac Design Innovat & Technol, Ave Alfonso XIII 97, Madrid 28016, Spain
[3] Tecnol Monterrey, Sch Sci & Engn, Ave Eugenio Garza Sada 2501, Monterrey 64849, Mexico
来源
CONAT 2024 INTERNATIONAL CONGRESS OF AUTOMOTIVE AND TRANSPORT ENGINEERING, PT ONE | 2025年
关键词
suspension parameter identification; vehicle dynamics simulation; basic local optimization; predictive vehicle analysis; non-invasive suspension testing; SYSTEM; OPTIMIZATION;
D O I
10.1007/978-3-031-77627-4_31
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this research, we extend a previously validated methodology for identifying vehicle suspension parameters from simpler quarter-vehicle and half-vehicle models to a comprehensive full-vehicle model. This study focuses on the application of synthetic data to perform non-invasive parameter identification, addressing the increased complexity inherent in the full-vehicle model due to its more intricate vertical dynamic equations and a larger set of parameters. Our approach employs a refined local optimization algorithm to ensure precise simulation of vehicle dynamics and accurate parameter identification. The full-vehicle model's complexity presents new challenges, including heightened non-linearity and the impact of different objective functions on the identification process. Our findings highlight the robustness and adaptability of the synthetic data-based methodology while also delineating the limitations encountered in this more demanding scenario. These insights contribute to the ongoing development of efficient and cost-effective solutions for dynamic vehicle parameter identification, essential for predictive maintenance and advanced vehicle design.
引用
收藏
页码:364 / 377
页数:14
相关论文
共 10 条
[1]  
Arivazhagan A., 2023, Int. J. Veh. Struct. Syst., V15, P839, DOI [10.4273/ijvss.15.6.20, DOI 10.4273/IJVSS.15.6.20]
[2]   Non-Invasive Identification of Vehicle Suspension Parameters: A Methodology Based on Synthetic Data Analysis [J].
de Cordova, Alfonso de Hoyos Fernandez ;
Olazagoitia, Jose Luis ;
Gijon-Rivera, Carlos .
MATHEMATICS, 2024, 12 (03)
[3]   Multi-objective optimization of the suspension system parameters of a full vehicle model [J].
Fossati, Giovani Gaiardo ;
Fadel Miguel, Leticia Fleck ;
Paucar Casas, Walter Jesus .
OPTIMIZATION AND ENGINEERING, 2019, 20 (01) :151-177
[4]   Heavy vehicle suspension parameters identification and estimation of vertical forces: experimental results [J].
Imine, H. ;
Madani, T. .
INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (02) :324-334
[5]  
Minaker BruceP., 2019, FUNDAMENTALS VEHICLE
[6]   Optimization Of Passive Vehicle Suspension System By Genetic Algorithm [J].
Mitra, Anirban. C. ;
Desai, Gouray. J. ;
Patwardhan, Saaish. R. ;
Shirke, Parag H. ;
Kurne, Waseem M. H. ;
Banerjee, Nilotpal .
INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 :1158-1166
[7]   Optimization of vehicle suspension parameters based on ride comfort and stability requirements [J].
Rodrigues Moreira Resende da Silva, Ryan ;
Lucas Reinaldo, Igor ;
Pinheiro Montenegro, Daniel ;
Simao Rodrigues, Gustavo ;
Dias Rossi Lopes, Elias .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (07) :1920-1929
[8]   A Compact Variable Stiffness and Damping Shock Absorber for Vehicle Suspension [J].
Sun, Shuaishuai ;
Deng, Huaxia ;
Du, Haiping ;
Li, Weihua ;
Yang, Jian ;
Liu, Guiping ;
Alici, Gursel ;
Yan, Tianhong .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2015, 20 (05) :2621-2629
[9]  
Sun XQ, 2016, INT J AUTO TECH-KOR, V17, P399
[10]   Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control [J].
Wang, Xu ;
Bi, Fengrong ;
Du, Haiping .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 105 :16-35