Frequency Domain Statistical Inference for High-Dimensional Time Series

被引:0
|
作者
Krampe, Jonas [1 ]
Paparoditis, Efstathios [2 ]
机构
[1] Cornell Univ, Ithaca, NY USA
[2] Univ Cyprus, Nicosia, Cyprus
关键词
De-biased estimator; False discovery control; Graphical model; Partial coherence; Testing; FALSE DISCOVERY RATE; CONFIDENCE-INTERVALS; SPECTRAL-ANALYSIS; COVARIANCE; MODELS; SHRINKAGE; TESTS;
D O I
10.1080/01621459.2025.2479244
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Analyzing time series in the frequency domain enables the development of powerful tools for investigating the second-order characteristics of multivariate processes. Parameters like the spectral density matrix and its inverse, the coherence or the partial coherence, encode comprehensively the complex linear relations between the component processes of the multivariate system. In this article, we develop inference procedures for such parameters in a high-dimensional, time series setup. Toward this goal, we first focus on the derivation of consistent estimators of the coherence and, more importantly, of the partial coherence which possess manageable limiting distributions that are suitable for testing purposes. Statistical tests of the hypothesis that the maximum over frequencies of the coherence, respectively, of the partial coherence, do not exceed a prespecified threshold value are developed. Our approach allows for testing hypotheses for individual coherences and/or partial coherences as well as for multiple testing of large sets of such parameters. In the latter case, a consistent procedure to control the false discovery rate is developed. The finite sample performance of the inference procedures introduced is investigated by means of simulations and applications to the construction of graphical interaction models for brain connectivity based on EEG data are presented.Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Inference of Breakpoints in High-dimensional Time Series
    Chen, Likai
    Wang, Weining
    Wu, Wei Biao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 1951 - 1963
  • [2] Lasso inference for high-dimensional time series
    Adamek, Robert
    Smeekes, Stephan
    Wilms, Ines
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1114 - 1143
  • [3] High-Dimensional Knockoffs Inference for Time Series Data
    Chi, Chien-Ming
    Fan, Yingying
    Ing, Ching-Kang
    Lv, Jinchi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2025,
  • [4] Bootstrap based inference for sparse high-dimensional time series models
    Krampe, Jonas
    Kreiss, Jens-Peter
    Paparoditis, Efstathios
    BERNOULLI, 2021, 27 (03) : 1441 - 1466
  • [5] Model-Free Statistical Inference on High-Dimensional Data
    Guo, Xu
    Li, Runze
    Zhang, Zhe
    Zou, Changliang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, : 186 - 197
  • [6] Spectral analysis of high-dimensional time series
    Fiecas, Mark
    Leng, Chenlei
    Liu, Weidong
    Yu, Yi
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 4079 - 4101
  • [7] STATISTICAL INFERENCE FOR HIGH-DIMENSIONAL LINEAR REGRESSION WITH BLOCKWISE MISSING DATA
    Xue, Fei
    Ma, Rong
    Li, Hongzhe
    STATISTICA SINICA, 2025, 35 (01) : 431 - 456
  • [8] STATISTICAL INFERENCE FOR GENETIC RELATEDNESS BASED ON HIGH-DIMENSIONAL LOGISTIC REGRESSION
    Ma, Rong
    Guo, Zijian
    Cai, T. Tony
    Li, Hongzhe
    STATISTICA SINICA, 2024, 34 (02) : 1023 - 1043
  • [9] Statistical Inference for Networks of High-Dimensional Point Processes
    Wang, Xu
    Kolar, Mladen
    Shojaie, Ali
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [10] ON THE FREQUENCY DOMAIN DETECTION OF HIGH DIMENSIONAL TIME SERIES
    Rosuel, A.
    Vallet, P.
    Loubaton, P.
    Mestre, X.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8782 - 8786