On a Quadratic Poisson Algebra and Integrable Lotka – Volterra Systems with Solutions in Terms of Lambert’s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W$$\end{document} Function

被引:0
|
作者
Peter H. van der Kamp [1 ]
David I. McLaren [1 ]
G. R. W. Quispel [1 ]
机构
[1] Department of Mathematical and Physical Sciences,
[2] La Trobe University,undefined
关键词
Poisson algebra; integrability; Lotka – Volterra system; Lambert ; function; Darboux polynomial;
D O I
10.1134/S1560354724580032
中图分类号
学科分类号
摘要
We study a class of integrable inhomogeneous Lotka – Volterra systems whose quadratic terms are defined by an antisymmetric matrix and whose linear terms consist of three blocks. We provide the Poisson algebra of their Darboux polynomials and prove a contraction theorem. We then use these results to classify the systems according to the number of functionally independent (and, for some, commuting) integrals. We also establish separability/solvability by quadratures, given the solutions to the 2- and 3-dimensional systems, which we provide in terms of the Lambert \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W$$\end{document} function.
引用
收藏
页码:382 / 407
页数:25
相关论文
共 50 条