Construction and validation of a prognostic nomogram model integrating machine learning-pathomics and clinical features in IDH-wildtype glioblastoma

被引:0
作者
Li, Yaomin [1 ]
Ouyang, Pei [1 ]
Zheng, Zongliao [1 ,2 ]
Deng, Jiapeng [1 ]
Guo, Aishun [2 ]
Wang, Weiwei [2 ]
Liu, Yawei [3 ,4 ]
Peng, Yuping [1 ]
Liao, Yankai [1 ]
Wang, Xiran [1 ]
Wang, Hai [1 ]
Wang, Zhaojun [1 ]
Mo, Zhitai [1 ]
Weng, Jianming [5 ]
Xv, Haiyan [1 ]
Zheng, Xiaoxia [1 ]
Liu, Junlu [1 ]
Wang, Yajuan [1 ]
Cao, Yongfu [6 ]
Huang, Guanglong [1 ]
Zhang, Xian [1 ]
Qi, Songtao [1 ]
机构
[1] Southern Med Univ, Nanfang Hosp, Inst Brain Dis, Dept Neurosurg, Guangzhou 510515, Guangdong, Peoples R China
[2] Fujian Med Univ, Dept Neurosurg, Zhangzhou Affiliated Hosp, Zhangzhou 363000, Peoples R China
[3] Southern Med Univ, Shunde Hosp, Dept Neurosurg, Foshan 528399, Guangdong, Peoples R China
[4] Southern Med Univ, Shunde Hosp, Med Res Ctr, Foshan 528399, Guangdong, Peoples R China
[5] Fujian Med Univ, Zhangzhou Affiliated Hosp, Dept Pathol, Zhangzhou 363000, Peoples R China
[6] Guangzhou Med Univ, Affiliated Hosp 5, Key Lab Biol Targeting Diag Therapy Rehabil Guangd, Neurosurg, Guangzhou Dadao Bei St 1838, Guangzhou 510799, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Glioblastoma; Machine learning; Pathomics; Nomogram; Collagen; GROSS-TOTAL RESECTION; GRADE;
D O I
10.1186/s12967-025-06482-7
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
BackgroundNovel diagnostic criteria for glioblastoma (GBM) in the 2021 WHO classification emphasize the importance of integrating pathological and molecular features. Pathomics, which involves the extraction of digital pathology data, is gaining significant interest in the field of tumor research. This study aimed to construct and validate a nomogram based on machine-learning pathomics for patients with GBM.MethodsWe extracted pathomic features from hematoxylin and eosin (H&E)-stained images of GBM from the Department of Neurosurgery of Nanfang Hospital (n = 125), Department of Neurosurgery of Zhangzhou Affiliated Hospital of Fujian Medical University (n = 96), and The Cancer Genome Atlas (n = 104) using CellProfiler. We then constructed a machine learning-pathomics risk score (PRS) model using the LASSO (least absolute shrinkage and selection operator)-Cox regression method. Clinical data including sex, age, preoperative Karnofsky performance status (KPS), extent of resection, subventricular zone (SVZ) association, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status, were also obtained. Differentially expressed gene analysis, gene ontology analysis, and immunohistochemical staining were utilized to establish a link between PRS and GBM molecules. We subsequently constructed a nomogram model integrating PRS with other independent clinical risk factors and was then validated externally.ResultsTen pathomics features were identified using the PRS model. An association between the PRS, tumor location, and molecular characteristics was observed. Notably, the PRS is related to the extracellular matrix, including type 1 and type 6 collagen. Patients with a low PRS, but not those with a high PRS, significantly benefited from supramaximal resection. Moreover, the combination of the PRS, KPS, extent of resection collectively formed a novel prognostic nomogram model with high accuracy. Conclusions: This novel prognostic nomogram model integrating machine learning pathomics and clinical features for GBM patients, is available as free online software at https://yaomin.shinyapps.io/GBM_Pathomics_Nomogram_NFH/.
引用
收藏
页数:13
相关论文
共 29 条
[1]   DNA-methylome-assisted classification of patients with poor prognostic subventricular zone associated IDH-wildtype glioblastoma [J].
Adeberg, Sebastian ;
Knoll, Maximilian ;
Koelsche, Christian ;
Bernhardt, Denise ;
Schrimpf, Daniel ;
Sahm, Felix ;
Koenig, Laila ;
Ben Harrabi, Semi ;
Hoerner-Rieber, Juliane ;
Verma, Vivek ;
Bewerunge-Hudler, Melanie ;
Unterberg, Andreas ;
Sturm, Dominik ;
Jungk, Christine ;
Herold-Mende, Christel ;
Wick, Wolfgang ;
von Deimling, Andreas ;
Debus, Juergen ;
Rieken, Stefan ;
Abdollahi, Amir .
ACTA NEUROPATHOLOGICA, 2022, 144 (01) :129-142
[2]   Biopsy versus partial versus gross total resection in older patients with high-grade glioma: a systematic review and meta-analysis [J].
Almenawer, Saleh A. ;
Badhiwala, Jetan H. ;
Alhazzani, Waleed ;
Greenspoon, Jeffrey ;
Farrokhyar, Forough ;
Yarascavitch, Blake ;
Algird, Almunder ;
Kachur, Edward ;
Cenic, Aleksa ;
Sharieff, Waseem ;
Klurfan, Paula ;
Gunnarsson, Thorsteinn ;
Ajani, Olufemi ;
Reddy, Kesava ;
Singh, Sheila K. ;
Murty, Naresh K. .
NEURO-ONCOLOGY, 2015, 17 (06) :868-881
[3]  
[Anonymous], **DATA OBJECT**
[4]   Digital pathology and artificial intelligence in translational medicine and clinical practice [J].
Baxi, Vipul ;
Edwards, Robin ;
Montalto, Michael ;
Saha, Saurabh .
MODERN PATHOLOGY, 2022, 35 (01) :23-32
[5]   IDH-wildtype lower-grade diffuse gliomas: the importance of histological grade and molecular assessment for prognostic stratification [J].
Berzero, Giulia ;
Di Stefano, Anna Luisa ;
Ronchi, Susanna ;
Bielle, Franck ;
Villa, Chiara ;
Guillerm, Erell ;
Capelle, Laurent ;
Mathon, Bertrand ;
Laurenge, Alice ;
Giry, Marine ;
Schmitt, Yohann ;
Marie, Yannick ;
Idbaih, Ahmed ;
Hoang-Xuan, Khe ;
Delattre, Jean-Yves ;
Mokhtari, Karima ;
Sanson, Marc .
NEURO-ONCOLOGY, 2021, 23 (06) :955-966
[6]   cIMPACT-NOW update 3: recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV" [J].
Brat, Daniel J. ;
Aldape, Kenneth ;
Colman, Howard ;
Holland, Eric C. ;
Louis, David N. ;
Jenkins, Robert B. ;
Kleinschmidt-DeMasters, B. K. ;
Perry, Arie ;
Reifenberger, Guido ;
Stupp, Roger ;
von Deimling, Andreas ;
Weller, Michael .
ACTA NEUROPATHOLOGICA, 2018, 136 (05) :805-810
[7]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[8]   Prognostic and predictive value of a pathomics signature in gastric cancer [J].
Chen, Dexin ;
Fu, Meiting ;
Chi, Liangjie ;
Lin, Liyan ;
Cheng, Jiaxin ;
Xue, Weisong ;
Long, Chenyan ;
Jiang, Wei ;
Dong, Xiaoyu ;
Sui, Jian ;
Lin, Dajia ;
Lu, Jianping ;
Zhuo, Shuangmu ;
Liu, Side ;
Li, Guoxin ;
Chen, Gang ;
Yan, Jun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Machine learning-based pathomics signature could act as a novel prognostic marker for patients with clear cell renal cell carcinoma [J].
Chen, Siteng ;
Jiang, Liren ;
Gao, Feng ;
Zhang, Encheng ;
Wang, Tao ;
Zhang, Ning ;
Wang, Xiang ;
Zheng, Junhua .
BRITISH JOURNAL OF CANCER, 2022, 126 (05) :771-777
[10]   Clinical use of machine learning-based pathomics signature for diagnosis and survival prediction of bladder cancer [J].
Chen, Siteng ;
Jiang, Liren ;
Zheng, Xinyi ;
Shao, Jialiang ;
Wang, Tao ;
Zhang, Encheng ;
Gao, Feng ;
Wang, Xiang ;
Zheng, Junhua .
CANCER SCIENCE, 2021, 112 (07) :2905-2914