Development and external multicentric validation of a deep learning-based clinical target volume segmentation model for whole-breast radiotherapy

被引:0
作者
Ubeira-Gabellini, Maria Giulia [1 ]
Palazzo, Gabriele [1 ]
Mori, Martina [1 ]
Tudda, Alessia [1 ]
Rivetti, Luciano [2 ]
Cagni, Elisabetta [3 ]
Castriconi, Roberta [1 ]
Landoni, Valeria [4 ]
Moretti, Eugenia [5 ]
Mazzilli, Aldo [6 ]
Oliviero, Caterina [7 ]
Placidi, Lorenzo [8 ]
Guidasci, Giulia Rambaldi [9 ]
Riani, Cecilia [1 ]
Fodor, Andrei [10 ]
Di Muzio, Nadia Gisella [10 ,11 ]
Jeraj, Robert [2 ,12 ]
del Vecchio, Antonella [1 ]
Fiorino, Claudio [1 ]
机构
[1] IRCCS San Raffaele Sci Inst, Med Phys, Milan, Italy
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Azienda USL IRCCS Reggio Emilia, Dept Adv Technol, Med Phys Unit, Reggio Emilia, Italy
[4] Ist Nazl Tumori Regina Elena, Rome, Italy
[5] Univ Hosp, Dept Med Phys, Udine, Italy
[6] Univ Hosp Parma AOUP, Med Phys Dept, Parma, Italy
[7] Univ Hosp, Naples, Italy
[8] Fdn Policlin Univ A Gemelli IRCCS, Uosd Med Phys & Radioprotect, Rome, Italy
[9] Fatebenefratelli Isola Tiberina Gemelli Isola, UOC Radioterapia Oncol, Rome, Italy
[10] IRCCS San Raffaele Sci Inst, Radiat Oncol, Milan, Italy
[11] Univ Vita Salute San Raffaele, Milan, Italy
[12] Univ Wisconsin, Dept Med Phys, Madison, WI USA
关键词
Segmentation; Breast clinical target volume; Radiotherapy; Deep learning; Artificial intelligence; AUTOMATIC SEGMENTATION; CANCER RADIOTHERAPY; DELINEATION; VARIABILITY; BOOST; THERAPY; ORGANS;
D O I
10.1016/j.phro.2025.100749
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: In order to optimize the radiotherapy treatment and minimize toxicities, organsat-risk (OARs) and clinical target volume (CTV) must be segmented. Deep Learning (DL) techniques show significant potential for performing this task effectively. The availability of a large single-institute data sample, combined with additional numerous multi-centric data, makes it possible to develop and validate a reliable CTV segmentation model. Materials and methods: Planning CT data of 1822 patients were available (861 from a single center for training and 961 from 8 centers for validation). A preprocessing step, aimed at standardizing all the images, followed by a 3D-Unet capable of segmenting both right and left CTVs was implemented. The metrics used to evaluate the performance were the Dice similarity coefficient (DSC), the Hausdorff distance (HD), and its 95th percentile variant (HD_95) and the Average Surface Distance (ASD). Results: The segmentation model achieved high performance on the validation set (DSC: 0.90; HD: 20.5 mm; HD_95: 10.0 mm; ASD: 2.1 mm; epoch 298). Furthermore, the model predicted smoother contours than the clinical ones along the cranial-caudal axis in both directions. When applied to internal and external data the same metrics demonstrated an overall agreement and model transferability for all but one (Inst 9) center. Conclusion:. A 3D-Unet for CTV segmentation trained on a large single institute cohort consisting of planning CTs and manual segmentations was built and externally validated, reaching high performance.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]   Training, validation, and clinical implementation of a deep-learning segmentation model for radiotherapy of loco-regional breast cancer [J].
Almberg, Sigrun Saur ;
Lervag, Christoffer ;
Frengen, Jomar ;
Eidem, Monica ;
Abramova, Tatiana Mikhailovna ;
Nordstrand, Cecilie Soma ;
Alsaker, Mirjam Delange ;
Tondel, Hanne ;
Raj, Sunil Xavier ;
Wanderas, Anne Dybdahl .
RADIOTHERAPY AND ONCOLOGY, 2022, 173 :62-68
[3]  
[Anonymous], 2019, Best clinical practice nella radioterapia dei tumori della mammella 2019
[4]   Automated contouring and statistical process control for plan quality in a breast clinical trial [J].
Baroudi, Hana ;
Nguyen, Callistus I. Huy Minh ;
Maroongroge, Sean ;
Smith, Benjamin D. ;
Niedzielski, Joshua S. ;
Shaitelman, Simona F. ;
Melancon, Adam ;
Shete, Sanjay ;
Whitaker, Thomas J. ;
Mitchell, Melissa P. ;
Arzu, Isidora Yvonne ;
Duryea, Jack ;
Hernandez, Soleil ;
El Basha, Daniel ;
Mumme, Raymond ;
Netherton, Tucker ;
Hoffman, Karen ;
Court, Laurence .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 28
[5]   Atlas-based segmentation technique incorporating inter-observer delineation uncertainty for whole breast [J].
Bell, L. R. ;
Dowling, J. A. ;
Pogson, E. M. ;
Metcalfe, P. ;
Holloway, L. .
MICRO-MINI & NANO-DOSIMETRY & INNOVATIVE TECHNOLOGIES IN RADIATION THERAPY (MMND&ITRO2016), 2017, 777
[6]   Clinical evaluation of a deep learning model for segmentation of target volumes in breast cancer radiotherapy [J].
Buelens, P. ;
Willems, S. ;
Vandewinckele, L. ;
Crijns, W. ;
Maes, F. ;
Weltens, C. G. .
RADIOTHERAPY AND ONCOLOGY, 2022, 171 :84-90
[7]   Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy [J].
Byun, Hwa Kyung ;
Chang, Jee Suk ;
Choi, Min Seo ;
Chun, Jaehee ;
Jung, Jinhong ;
Jeong, Chiyoung ;
Kim, Jin Sung ;
Chang, Yongjin ;
Chung, Seung Yeun ;
Lee, Seungryul ;
Kim, Yong Bae .
RADIATION ONCOLOGY, 2021, 16 (01)
[8]   Inter-institutional variability of knowledge-based plan prediction of left whole breast irradiation [J].
Castriconi, Roberta ;
Tudda, Alessia ;
Placidi, Lorenzo ;
Benecchi, Giovanna ;
Cagni, Elisabetta ;
Dusi, Francesca ;
Ianiro, Anna ;
Landoni, Valeria ;
Malatesta, Tiziana ;
Mazzilli, Aldo ;
Meffe, Guenda ;
Oliviero, Caterina ;
Guidasci, Giulia Rambaldi ;
Scaggion, Alessandro ;
Trojani, Valeria ;
del Vecchio, Antonella ;
Fiorino, Claudio .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2024, 120
[9]   Replacing Manual Planning of Whole Breast Irradiation With Knowledge-Based Automatic Optimization by Virtual Tangential-Fields Arc Therapy [J].
Castriconi, Roberta ;
Esposito, Pier Giorgio ;
Tudda, Alessia ;
Mangili, Paola ;
Broggi, Sara ;
Fodor, Andrei ;
Deantoni, Chiara L. ;
Longobardi, Barbara ;
Pasetti, Marcella ;
Perna, Lucia ;
Del Vecchio, Antonella ;
Di Muzio, Nadia Gisella ;
Fiorino, Claudio .
FRONTIERS IN ONCOLOGY, 2021, 11
[10]   Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer [J].
Choi, Min Seo ;
Choi, Byeong Su ;
Chung, Seung Yeun ;
Kim, Nalee ;
Chun, Jaehee ;
Kim, Yong Bae ;
Chang, Jee Suk ;
Kim, Jin Sung .
RADIOTHERAPY AND ONCOLOGY, 2020, 153 :139-145