On the solution for the initial-boundary value problem for a nonlocal elliptic-hyperbolic system related to the short pulse equation

被引:0
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Matemat, via E Orabona 4, I-70125 Bari, Italy
来源
ADVANCES IN CONTINUOUS AND DISCRETE MODELS | 2025年 / 2025卷 / 01期
关键词
Existence; Uniqueness; Nonlocal formulation; Short pulse equation; Initial-boundary value problem; OSTROVSKY-HUNTER EQUATION; FINITE-DIFFERENCE SCHEME; REGULARIZED SHORT-PULSE; GLOBAL WELL-POSEDNESS; CONSERVATION-LAWS; FEMTOSECOND PULSES; CONTINUUM SPECTRUM; OPTICAL PULSES; DYNAMICS; CONVERGENCE;
D O I
10.1186/s13662-025-03963-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a nonlocal elliptic-hyperbolic system related to short pulse equation. That equation describes the dynamics of the electrical field of linearly polarized continuum spectrum pulses in optical waveguides, including fused-silica telecommunication-type or photonic-crystal fibers, as well as hollow capillaries filled with transparent gases or liquids. We augment the equations with some boundary conditions and prove the well-posedness of the global in time distributional solution.
引用
收藏
页数:37
相关论文
共 62 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[3]   A model equation for ultrashort optical pulses around the zero dispersion frequency [J].
Amiranashvili, S. ;
Vladimirov, A. G. ;
Bandelow, U. .
EUROPEAN PHYSICAL JOURNAL D, 2010, 58 (02) :219-226
[4]   Solitary-wave solutions for few-cycle optical pulses [J].
Amiranashvili, Sh. ;
Vladimirov, A. G. ;
Bandelow, U. .
PHYSICAL REVIEW A, 2008, 77 (06)
[5]  
BEALS R, 1989, STUD APPL MATH, V81, P125
[6]  
Bespalov VG, 1998, J OPT TECHNOL+, V65, P823
[7]   Method for analyzing the propagation dynamics of femtosecond pulses with a continuum spectrum in transparent optical media [J].
Bespalov, VG ;
Kozlov, SA ;
Shpolyanskii, YA .
JOURNAL OF OPTICAL TECHNOLOGY, 2000, 67 (04) :303-308
[8]   Simplified field wave equations for the nonlinear propagation of extremely short light pulses [J].
Bespalov, VG ;
Kozlov, SA ;
Shpolyanskiy, YA ;
Walmsley, IA .
PHYSICAL REVIEW A, 2002, 66 (01) :138111-1381110
[9]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[10]   Well-posedness of a conservation law with non-local flux arising in traffic flow modeling [J].
Blandin, Sebastien ;
Goatin, Paola .
NUMERISCHE MATHEMATIK, 2016, 132 (02) :217-241