ASYMPTOTIC DIMENSION AND GEOMETRIC DECOMPOSITIONS IN DIMENSIONS 3 AND 4

被引:0
作者
Peruyero, H. Contreras [1 ]
Suarez-Serrato, P. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Instituto Neurobiol,UNAM,Campus UNAM,Juriquilla, Antigua Carretera Patzcuaro 8701, Morelia 58089, Michoacan, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Tenochtitlan, Mexico
关键词
asymptotic dimension; Novikov conjecture; geometric decompositions; Alexandrov spaces; THEORETIC NOVIKOV-CONJECTURE; CONNES CONJECTURE; HYPERBOLIC GROUPS; MINIMAL ENTROPY; MANIFOLDS; TOPOLOGY;
D O I
10.1017/S1446788725000072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the fundamental groups of smooth $4$ -manifolds that admit geometric decompositions in the sense of Thurston have asymptotic dimension at most four, and equal to four when aspherical. We also show that closed $3$ -manifold groups have asymptotic dimension at most three. Our proof method yields that the asymptotic dimension of closed $3$ -dimensional Alexandrov spaces is at most three. Thus, we obtain that the Novikov conjecture holds for closed $4$ -manifolds with such a geometric decomposition and for closed $3$ -dimensional Alexandrov spaces. Consequences of these results include a vanishing result for the Yamabe invariant of certain $0$ -surgered geometric $4$ -manifolds and the existence of zero in the spectrum of aspherical smooth $4$ -manifolds with a geometric decomposition.
引用
收藏
页数:26
相关论文
共 65 条
  • [2] [Anonymous], 2001, Algebr. Geom. Topol.
  • [3] [Anonymous], 2006, New York J. Math, V12, P249
  • [4] Topological rigidity of higher graph manifolds
    Bárcenas N.
    Juan-Pineda D.
    Suárez-Serrato P.
    [J]. Boletín de la Sociedad Matemática Mexicana, 2017, 23 (1) : 119 - 127
  • [5] Squeezing and higher algebraic K-theory
    Bartels, AC
    [J]. K-THEORY, 2003, 28 (01): : 19 - 37
  • [6] Asymptotic dimension
    Bell, G.
    Dranishnikov, A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (12) : 1265 - 1296
  • [7] Bell G., 2017, Office Hours with a Geometric Group Theorist, P219
  • [8] Brown K. S., 2012, Cohomology of Groups
  • [9] HOMOTOPY INVARIANCE OF HIGHER SIGNATURES
    CAPPELL, SE
    [J]. INVENTIONES MATHEMATICAE, 1976, 33 (02) : 171 - 179
  • [10] SPLITTING THEOREM FOR MANIFOLDS
    CAPPELL, SE
    [J]. INVENTIONES MATHEMATICAE, 1976, 33 (02) : 69 - 170