Policies Grow on Trees: Model Checking Families of MDPs

被引:0
作者
Andriushchenko, Roman [1 ]
Ceska, Milan [1 ]
Junges, Sebastian [2 ]
Macak, Filip [1 ]
机构
[1] Brno Univ Technol, Brno, Czech Republic
[2] Radboud Univ Nijmegen, Nijmegen, Netherlands
来源
AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, ATVA 2024, PT II | 2025年 / 15055卷
关键词
ABSTRACTION-REFINEMENT; INDUCTIVE SYNTHESIS; STRATEGY SYNTHESIS; VERIFICATION;
D O I
10.1007/978-3-031-78750-8_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Markov decision processes (MDPs) provide a fundamental model for sequential decision making under process uncertainty. A classical synthesis task is to compute for a given MDP a winning policy that achieves a desired specification. However, at design time, one typically needs to consider a family of MDPs modelling various system variations. For a given family, we study synthesising (1) the subset of MDPs where a winning policy exists and (2) a preferably small number of winning policies that together cover this subset. We introduce policy trees that concisely capture the synthesis result. The key ingredient for synthesising policy trees is a recursive application of a game-based abstraction. We combine this abstraction with an efficient refinement procedure and a post-processing step. An extensive empirical evaluation demonstrates superior scalability of our approach compared to naive baselines. For one of the benchmarks, we find 246 winning policies covering 94 million MDPs. Our algorithm requires less than 30 min, whereas the naive baseline only covers 3.7% of MDPs in 24 h.
引用
收藏
页码:51 / 75
页数:25
相关论文
共 58 条
[1]  
Andriushchenko R, 2024, Arxiv, DOI arXiv:2407.12552
[2]  
Andriushchenko R, 2022, PR MACH LEARN RES, V180, P85
[3]   PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs [J].
Andriushchenko, Roman ;
Ceska, Milan ;
Junges, Sebastian ;
Katoen, Joost-Pieter ;
Stupinsky, Simon .
COMPUTER AIDED VERIFICATION (CAV 2021), PT I, 2021, 12759 :856-869
[4]   Inductive Synthesis for Probabilistic Programs Reaches New Horizons [J].
Andriushchenko, Roman ;
Ceska, Milan ;
Junges, Sebastian ;
Katoen, Joost-Pieter .
TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PT I, TACAS 2021, 2021, 12651 :191-209
[5]   Parameter-Independent Strategies for pMDPs via POMDPs [J].
Arming, Sebastian ;
Bartocci, Ezio ;
Chatterjee, Krishnendu ;
Katoen, Joost-Pieter ;
Sokolova, Ana .
QUANTITATIVE EVALUATION OF SYSTEMS, QEST 2018, 2018, 11024 :53-70
[6]   dtControl 2.0: Explainable Strategy Representation via Decision Tree Learning Steered by Experts [J].
Ashok, Pranav ;
Jackermeier, Mathias ;
Kretinsky, Jan ;
Weinhuber, Christoph ;
Weininger, Maximilian ;
Yadav, Mayank .
TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PT II, TACAS 2021, 2021, 12652 :326-345
[7]   SOS: Safe, Optimal and Small Strategies for Hybrid Markov Decision Processes [J].
Ashok, Pranav ;
Kretinsky, Jan ;
Larsen, Kim Guldstrand ;
Le Coeent, Adrien ;
Taankvist, Jakob Haahr ;
Weininger, Maximilian .
QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2019), 2019, 11785 :147-164
[8]  
Azar M. G., 2013, NIPS, V26, P2220
[9]   Scenario-based verification of uncertain parametric MDPs [J].
Badings, Thom ;
Cubuktepe, Murat ;
Jansen, Nils ;
Junges, Sebastian ;
Katoen, Joost-Pieter ;
Topcu, Ufuk .
INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2022, 24 (05) :803-819
[10]  
Baier C., 2018, HDB MODEL CHECKING, P963, DOI [DOI 10.1007/978-3-319-10575-828, DOI 10.1007/978-3-319-10575-8_28]