Global structure of multiple positive solutions for the kth mean curvature in Minkowski space

被引:0
作者
Chen, Tianlan [1 ]
Goodrich, Christopher S. [2 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
美国国家科学基金会;
关键词
Bifurcation curve; kth mean curvature; positive solution; Calabi-Bernstein type asymptotic; PRESCRIBED SCALAR CURVATURE; DIRICHLET PROBLEM; RADIAL SOLUTIONS; NONNEGATIVE SOLUTIONS; HYPERSURFACES; OPERATOR; BIFURCATION; EXISTENCE; EQUATIONS; GRAPHS;
D O I
10.1007/s11784-025-01201-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply bifurcation theories to construct repeated S-shaped and Sigma-shaped global unbounded continua of positive solutions of the following kth mean curvature problems in Minkowski space -(r(N-k)(u '/root 1-u '(2))(k))' = lambda N/C(N)(k)r(N-1) H-k(r, u), r is an element of (0, R), u(0) = 0 = u '(R), where 3 <= k < N < 2k with k, N being integers and C-N(k) = N!/(N-k)!k! the combinational constant. Moreover, Calabi-Bernstein type asymptotic of one-sign solutions are given.
引用
收藏
页数:19
相关论文
共 31 条
[1]   Σ-Shaped Bifurcation Curves [J].
Acharya, A. ;
Fonseka, N. ;
Quiroa, J. ;
Shivaji, R. .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :1255-1266
[2]   Ground state solution for a problem with mean curvature operator in Minkowski space [J].
Azzollini, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2086-2095
[3]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[4]  
Bayard P, 2003, CALC VAR PARTIAL DIF, V18, P1, DOI 10.1007/s00526-002-0178-5
[5]   Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature [J].
Bayard, Pierre ;
Delanoe, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03) :903-915
[6]   Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :536-557
[7]   Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (04) :644-659
[8]   Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :270-287
[9]   Bifurcation from interval and positive solutions of Minkowski-curvature on unbounded domain [J].
Chen, Tianlan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (02)
[10]   AMBROSETTI-PRODI TYPE RESULTS FOR A NEUMANN PROBLEM WITH A MEAN CURVATURE OPERATOR IN MINKOWSKI SPACES [J].
Chen, Tianlan ;
Duan, Lei .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (05) :1627-1635