Development with external validation of a prediction model for postoperative acute kidney injury following noncardiac surgery in elderly patients

被引:0
作者
Zhang, Xiaoying [1 ]
Ruan, Xianghan [1 ,2 ]
Yu, Yao [1 ]
Sun, Tongyan [3 ]
Zhang, Jiaqiang [4 ]
Cong, Xuhui [4 ]
Lou, Jingsheng [1 ]
Li, Hao [1 ]
Cao, Jiangbei [1 ]
Liu, Yanhong [1 ]
Mi, Weidong [1 ,5 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Anesthesiol, Med Ctr 1, Beijing, Peoples R China
[2] Chinese Peoples Liberat Army, Med Sch, Beijing, Peoples R China
[3] Hangzhou Le9 Healthcare Technol Co Ltd, Hangzhou, Peoples R China
[4] Henan Prov Peoples Hosp, Dept Anesthesia & Perioperat Med, Zhengzhou, Henan, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Natl Clin Res Ctr Geriatr Dis, Beijing, Peoples R China
关键词
Acute Kidney Injury; Elderly Patients; Noncardiac Surgery; Prediction Model; Risk Classification; RISK; RECOVERY; AKI; MORTALITY;
D O I
10.1186/s12877-025-06023-3
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Study objectiveTo develop and externally validate a risk prediction model for postoperative acute kidney injury (PO-AKI) in elderly patients undergoing noncardiac surgery, addressing the current gap in predictive tools for this vulnerable population.DesignA multicenter retrospective cohort study presented according to TRIPOD + AI statement.SettingConducted in 21 tertiary hospitals across 11 provinces in China from January 2009 to April 2022.PatientsElderly patients (>= 65 years) undergoing noncardiac procedures.Interventions and measurementsThe endpoint was PO-AKI within seven days post-surgery, diagnosed using the KDIGO criteria. Data were extracted from electronic medical records for model derivation and validation.Main resultsThe study included 163,131 elderly patients, with 52,494 for model discovery, 7,899 and 80,641 for external validation. The model incorporated nine variables: age, heart disease history, preoperative hyponatremia, renal surgery (yes/no), surgery type, surgery duration, intraoperative diuretics usage, first-aid vasopressors usage, and blood transfusion. The model demonstrated acceptable discriminative ability with AUROC values of 0.803, 0.793, 0.770, and 0.774 across the training, internal validation, and two external validation datasets, respectively. The calibration plots and decision curve analyses yielded commendable results in both training and validation sets. To streamline usability, we employed risk scores and categorized the population into low-, medium-, and high-risk subgroups.ConclusionsClinicians could implement this externally validated risk prediction model to stratify PO-AKI risks in elderly patients during the early postoperative phases of noncardiac surgery.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Biomarkers of AKI: A Review of Mechanistic Relevance and Potential Therapeutic Implications [J].
Alge, Joseph L. ;
Arthur, John M. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2015, 10 (01) :147-155
[2]   Postoperative AKI-Prevention Is Better than Cure? [J].
Bell, Samira ;
Prowle, John .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (01) :4-6
[3]   Risk of postoperative acute kidney injury in patients undergoing orthopaedic surgery-development and validation of a risk score and effect of acute kidney injury on survival: observational cohort study [J].
Bell, Samira ;
Dekker, Friedo W. ;
Vadiveloo, Thenmalar ;
Marwick, Charis ;
Deshmukh, Harshal ;
Donnan, Peter T. ;
Van Diepen, Merel .
BMJ-BRITISH MEDICAL JOURNAL, 2015, 351
[4]   Acute kidney injury [J].
Bellomo, Rinaldo ;
Kellum, John A. ;
Ronco, Claudio .
LANCET, 2012, 380 (9843) :756-766
[5]   Postoperative AKI [J].
Boyer, Naomi ;
Eldridge, Jack ;
Prowle, John R. ;
Forni, Lui G. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 17 (10) :1535-1545
[6]   Hyponatremia influences the outcome of patients with acute-on-chronic liver failure: an analysis of the CANONIC study [J].
Cardenas, Andres ;
Sola, Elsa ;
Rodriguez, Ezequiel ;
Barreto, Rogelio ;
Graupera, Isabel ;
Pavesi, Marco ;
Saliba, Faouzi ;
Welzel, Tania Mara ;
Martinez-Gonzalez, Javier ;
Gustot, Thierry ;
Bernardi, Mauro ;
Arroyo, Vicente ;
Gines, Pere .
CRITICAL CARE, 2014, 18 (06)
[7]   Acute kidney injury, mortality, length of stay, and costs in hospitalized patients [J].
Chertow, GM ;
Burdick, E ;
Honour, M ;
Bonventre, JV ;
Bates, DW .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2005, 16 (11) :3365-3370
[8]   Diuretics decrease fluid balance in patients on invasive mechanical ventilation: the randomized-controlled single blind, IRIHS study [J].
Cinotti, Raphael ;
Lascarrou, Jean-Baptiste ;
Azais, Marie-Ange ;
Colin, Gwenhael ;
Quenot, Jean-Pierre ;
Mahe, Pierre-Joachim ;
Roquilly, Antoine ;
Gaultier, Aurelie ;
Asehnoune, Karim ;
Reignier, Jean .
CRITICAL CARE, 2021, 25 (01)
[9]   TRIPOD plus AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods [J].
Collins, Gary S. ;
Moons, Karel G. M. ;
Dhiman, Paula ;
Riley, Richard ;
Beam, Andrew L. ;
Van Calster, Ben ;
Ghassemi, Marzyeh ;
Liu, Xiaoxuan ;
Reitsma, Johannes B. ;
van Smeden, Maarten ;
Boulesteix, Anne-Laure ;
Camaradou, Jennifer Catherine ;
Celi, Leo Anthony ;
Denaxas, Spiros ;
Denniston, Alastair K. ;
Glocker, Ben ;
Golub, Robert M. ;
Harvey, Hugh ;
Heinze, Georg ;
Hoffman, Michael M. ;
Kengne, Andre Pascal ;
Lam, Emily ;
Lee, Naomi ;
Loder, Elizabeth W. ;
Maier-Hein, Lena ;
Mateen, Bilal A. ;
McCradden, Melissa ;
Oakden-Rayner, Lauren ;
Ordish, Johan ;
Parnell, Richard ;
Rose, Sherri ;
Singh, Karandeep ;
Wynants, Laure ;
Logullo, Patricia .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 385
[10]   Evaluation of clinical prediction models (part 1): from development to external validation [J].
Collins, Gary S. ;
Dhiman, Paula ;
Ma, Jie ;
Schlussel, Michael M. ;
Archer, Lucinda ;
Van Calster, Ben ;
Harrell Jr, Frank E. ;
Martin, Glen P. ;
Moons, Karel G. M. ;
van Smeden, Maarten ;
Sperrin, Matthew ;
Bullock, Garrett S. ;
Riley, Richard .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 384