Siamese network with squeeze-attention for incomplete multi-view multi-label classification

被引:0
作者
Mengqing Wang [1 ]
Jiarui Chen [1 ]
Lian Zhao [1 ]
Yinghao Ye [1 ]
Xiaohuan Lu [1 ]
机构
[1] Guizhou University,College of Big Data and Information Engineering
关键词
Incomplete multi-view learning; Missing multi-label classification; Siamese network; Dynamic fusion;
D O I
10.1007/s40747-025-01909-6
中图分类号
学科分类号
摘要
Multi-view multi-label classification (MvMLC) has garnered significant interest because of its ability to handle complex datasets. However, the inherent complexity of real-world data often results in incomplete views and missing labels, which limit the richness of data and hinder the accurate association of features with their corresponding categories. Additionally, the MvMLC task is intricate due to the need for diverse views to coherently represent the same entity, thus demanding the creation of stable and consistent multi-view representations that can ensure a reliable feature alignment process across heterogeneous perspectives. To address these challenges, we propose a model based on a Siamese network with squeeze attention (SSA) for incomplete multi-view multi-label classification (iMvMLC). Specifically, to capture the shared semantic information across different views, we combine cross-view collaborative synthesis (CCS) and viewwise representation calibration (VRC) mechanisms. CCS enhances the semantic interaction between views by introducing directive blocks and stacked autoencoders on top of the Siamese network, thereby improving the ability to extract shared semantic representations. The VRC mechanism uses contrastive learning with positive and negative sample pairs to refine the shared semantic space, ensuring higher feature consistency and better alignment across views. Furthermore, considering the task-specific importance variation exhibited by each view, we apply the squeeze attention-weighted fusion (SWF) strategy, which performs feature dimensionality reduction to amplify the key characteristics from each view and enables the model to flexibly adjust the influence of each perspective. Extensive evaluations conducted across five datasets demonstrate that the SSA method outperforms many existing approaches.
引用
收藏
相关论文
共 33 条
  • [21] Multi-view dynamic graph convolution neural network for traffic flow prediction
    Huang, Xiaohui
    Ye, Yuming
    Yang, Xiaofei
    Xiong, Liyan
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 222
  • [22] Siamese Network with Multi-scale Feature Fusion and Dual Attention Mechanism for Template Matching
    Zhao, Kai
    He, Binbing
    Pan, Shiju
    Zhu, Yuan
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6588 - 6592
  • [23] Siamese Network Based on MLP and Multi-head Cross Attention for Visual Object Tracking
    Li, Piaoyang
    Lan, Shiyong
    Sun, Shipeng
    Wang, Wenwu
    Gao, Yongyang
    Yang, Yongyu
    Yu, Guangyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PART X, 2023, 14263 : 420 - 431
  • [24] Remote Sensing Image Change Detection Based on Deep Multi-Scale Multi-Attention Siamese Transformer Network
    Zhang, Mengxuan
    Liu, Zhao
    Feng, Jie
    Liu, Long
    Jiao, Licheng
    REMOTE SENSING, 2023, 15 (03)
  • [25] Automated fundus ultrasound image classification based on siamese convolutional neural networks with multi-attention
    Jiachen Tan
    Yongquan Dong
    Junchi Li
    BMC Medical Imaging, 23
  • [26] Automated fundus ultrasound image classification based on siamese convolutional neural networks with multi-attention
    Tan, Jiachen
    Dong, Yongquan
    Li, Junchi
    BMC MEDICAL IMAGING, 2023, 23 (01)
  • [27] Siamese Network with Channel-wise Attention and Multi-scale Fusion for Robust Object Tracking
    Tang, Eryong
    Wang, Yusheng
    Liu, Ye
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6515 - 6520
  • [28] Multi-view-based siamese convolutional neural network for 3D object retrieval
    Li, Haisheng
    Zheng, Yanping
    Cao, Jian
    Cai, Qiang
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 78 : 11 - 21
  • [29] Siamese Network Algorithm Based on Multi-Scale Channel Attention Fusion and Multi-Scale Depth-Wise Cross Correlation
    Chen, Qingjun
    Zheng, Hua
    Pan, Hao
    Liao, Xiaoqi
    Wang, Hongkai
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [30] Change Detection for High-Resolution Remote Sensing Images Based on a Multi-Scale Attention Siamese Network
    Li, Jiankang
    Zhu, Shanyou
    Gao, Yiyao
    Zhang, Guixin
    Xu, Yongming
    REMOTE SENSING, 2022, 14 (14)