Recent advancements and perspectives in lithium-ion battery aging: Mechanism, characterization, and prediction

被引:0
作者
Liu, Yuan [1 ]
Lai, Xin [1 ]
Zheng, Yuejiu [1 ]
Cheng, E. [2 ]
Zhu, Jiajun [1 ]
Qian, Linglong [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
[2] Shanghai Univ Elect Power, Sch Elect Engn, Shanghai 200090, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Battery aging; Aging mechanism; Aging characterization; State estimation; USEFUL LIFE PREDICTION; INTERNAL SHORT-CIRCUIT; STATE-OF-CHARGE; ECHELON UTILIZATION; INCREMENTAL CAPACITY; HEALTH ESTIMATION; DEGRADATION; MODEL; DISSOLUTION; EVOLUTION;
D O I
10.1016/j.est.2025.116670
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion battery aging represents a fundamental challenge affecting both performance degradation and safety risks in energy storage systems. This review presents a systematic examination of aging mechanisms, advanced characterization techniques, and state-of-the-art prediction methodologies. The analysis begins with a comprehensive evaluation of intrinsic (electrode materials, electrolyte decomposition, separator degradation, current collector corrosion) and extrinsic (temperature, C-rate, depth of discharge, state of charge) factors governing capacity fade. We establish a critical equivalence framework between natural aging and accelerated aging protocols, followed by an in-depth assessment of characterization approaches including: (1) in situ material analysis, (2) electrochemical diagnostics, and (3) multiphysics modeling, with particular emphasis on emerging in situ ultrasonic detection and a novel electrochemical impedance spectroscopy online monitoring scheme. The review further develops predictive algorithms for state-of-health assessment, remaining useful life estimation, and knee-point detection, introducing a robust neural network-based aging estimation method optimized for dynamic operating conditions. By synthesizing current research frontiers and persistent challenges, this work provides both fundamental insights into battery aging phenomena and practical solutions for aging state evaluation, offering valuable guidance for next-generation battery management system development.
引用
收藏
页数:32
相关论文
共 266 条
[1]   Avoiding thermal runaway in lithium-ion batteries using ultrasound detection of early failure mechanisms [J].
Appleberry, Maura C. ;
Kowalski, Jeffrey A. ;
Africk, Steven A. ;
Mitchell, Jared ;
Ferree, Thomas C. ;
Chang, Vincent ;
Parekh, Vashisth ;
Xu, Ziyi ;
Ye, Ziwen ;
Whitacre, Jay F. ;
Murphy, Shawn D. .
JOURNAL OF POWER SOURCES, 2022, 535
[2]   Review-"Knees" in Lithium-Ion Battery Aging Trajectories [J].
Attia, Peter M. ;
Bills, Alexander ;
Brosa Planella, Ferran ;
Dechent, Philipp ;
dos Reis, Goncalo ;
Dubarry, Matthieu ;
Gasper, Paul ;
Gilchrist, Richard ;
Greenbank, Samuel ;
Howey, David ;
Liu, Ouyang ;
Khoo, Edwin ;
Preger, Yuliya ;
Soni, Abhishek ;
Sripad, Shashank ;
Stefanopoulou, Anna G. ;
Sulzer, Valentin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
[3]   Recent progress of composite polyethylene separators for lithium/ sodium batteries [J].
Babiker, Dafaalla M. D. ;
Usha, Zubaida Rukhsana ;
Wan, Caixia ;
Hassaan, Mohmmed Mun ELseed ;
Chen, Xin ;
Li, Liangbin .
JOURNAL OF POWER SOURCES, 2023, 564
[4]   Chemical rate phenomenon approach applied to lithium battery capacity fade estimation [J].
Baghdadi, I. ;
Briat, O. ;
Deletage, J. Y. ;
Gyan, P. ;
Vinassa, J. M. .
MICROELECTRONICS RELIABILITY, 2016, 64 :134-139
[5]   Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system [J].
Basu, Suman ;
Hariharan, Krishnan S. ;
Kolake, Subramanya Mayya ;
Song, Taewon ;
Sohn, Dong Kee ;
Yeo, Taejung .
APPLIED ENERGY, 2016, 181 :1-13
[6]   Estimating State of Charge for xEV Batteries Using 1D Convolutional Neural Networks and Transfer Learning [J].
Bhattacharjee, Arnab ;
Verma, Ashu ;
Mishra, Sukumar ;
Saha, Tapan K. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (04) :3123-3135
[7]   Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling [J].
Bhattacharyya, Sohini ;
Roy, Soumyabrata ;
Vajtai, Robert .
SMALL, 2024,
[8]   Characterization and quantification of multi-field coupling in lithium-ion batteries under mechanical constraints [J].
Cai, Xue ;
Zhang, Caiping ;
Chen, Zeping ;
Zhang, Linjing ;
Sauer, Dirk Uwe ;
Li, Weihan .
JOURNAL OF ENERGY CHEMISTRY, 2024, 95 :364-379
[9]   Stability of solid electrolyte interphases and calendar life of lithium metal batteries [J].
Cao, Xia ;
Xu, Yaobin ;
Zou, Lianfeng ;
Bao, Jie ;
Chen, Yunxiang ;
Matthews, Bethany E. ;
Hu, Jiangtao ;
He, Xinzi ;
Engelhard, Mark H. ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Wang, Chunsheng ;
Xiao, Jie ;
Liu, Jun ;
Wang, Chongmin ;
Xu, Wu ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (04) :1548-1559
[10]   Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium-sulfur pouch cells during calendar aging [J].
Capkova, Dominika ;
Knap, Vaclav ;
Fedorkova, Andrea Strakova ;
Stroe, Daniel-Ioan .
APPLIED ENERGY, 2023, 332