Image restoration for ring-array photoacoustic tomography based on an attention mechanism driven conditional generative adversarial network

被引:0
作者
Dong, Wende [1 ]
Zhang, Yanli [1 ]
Hu, Luqi [1 ]
Liu, Songde [2 ,4 ]
Tian, Chao [2 ,3 ,4 ,5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 211106, Peoples R China
[2] Univ Sci & Technol China, Sch Engn Sci, Hefei 230026, Anhui, Peoples R China
[3] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Anhui, Peoples R China
[4] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Anesthesiol, Div Life Sci & Med, Hefei 230001, Anhui, Peoples R China
[5] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Anhui Prov Key Lab Biomed Imaging & Intelligent Pr, Hefei 230088, Peoples R China
来源
PHOTOACOUSTICS | 2025年 / 43卷
基金
中国国家自然科学基金;
关键词
Photoacoustic tomography; Image restoration; Attention mechanism; IN-VIVO; RECONSTRUCTION; DECONVOLUTION; RESOLUTION; ALGORITHM;
D O I
10.1016/j.pacs.2025.100714
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ring-Array photoacoustic tomography (PAT) systems have shown great promise in non-invasive biomedical imaging. However, images produced by these systems often suffer from quality degradation due to non-ideal imaging conditions, with common issues including blurring and streak artifacts. To address these challenges, we propose an image restoration method based on a conditional generative adversarial network (CGAN) framework. Our approach integrates a hybrid spatial and channel attention mechanism within a Residual Shifted Window Transformer Module (RSTM) to enhance the generator's performance. Additionally, we have developed a comprehensive loss function to balance pixel-level accuracy, detail preservation, and perceptual quality. We further incorporate a gamma correction module to enhance the contrast of the network's output. Experimental results on both simulated and in vivo data demonstrate that our method significantly improves resolution and restores overall image quality.
引用
收藏
页数:12
相关论文
共 66 条
[1]   Robust Photoacoustic Beamforming Using Dense Convolutional Neural Networks [J].
Abu Anas, Emran Mohammad ;
Zhang, Haichong K. ;
Audigier, Chloe ;
Boctor, Emad M. .
SIMULATION, IMAGE PROCESSING, AND ULTRASOUND SYSTEMS FOR ASSISTED DIAGNOSIS AND NAVIGATION, 2018, 11042 :3-11
[2]   Deep learning approach to improve tangential resolution in photoacoustic tomography [J].
Ajendran, Praveenbalaji R. ;
Pramanik, Manojit .
BIOMEDICAL OPTICS EXPRESS, 2020, 11 (12) :7311-7323
[3]   Deep learning for photoacoustic tomography from sparse data [J].
Antholzer, Stephan ;
Haltmeier, Markus ;
Schwab, Johannes .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (07) :987-1005
[4]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[5]   A review of clinical photoacoustic imaging: Current and future trends [J].
Attia, Amalina Binte Ebrahim ;
Balasundaram, Ghayathri ;
Moothanchery, Mohesh ;
Dinish, U. S. ;
Bi, Renzhe ;
Ntziachristos, Vasilis ;
Olivo, Malini .
PHOTOACOUSTICS, 2019, 16
[6]   Deep Neural Network-Based Sinogram Super-Resolution and Bandwidth Enhancement for Limited-Data Photoacoustic Tomography [J].
Awasthi, Navchetan ;
Jain, Gaurav ;
Kalva, Sandeep Kumar ;
Pramanik, Manojit ;
Yalavarthy, Phaneendra K. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (12) :2660-2673
[7]   Streak artifact suppression in photoacoustic computed tomography using adaptive back projection [J].
Cai, Chuangjian ;
Wang, Xuanhao ;
Si, Ke ;
Qian, Jun ;
Luo, Jianwen ;
Ma, Cheng .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (09) :4803-4814
[8]   Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays [J].
Chen, Ao ;
Liao, Sha ;
Cheng, Mengnan ;
Ma, Kailong ;
Wu, Liang ;
Lai, Yiwei ;
Qiu, Xiaojie ;
Yang, Jin ;
Xu, Jiangshan ;
Hao, Shijie ;
Wang, Xin ;
Lu, Huifang ;
Chen, Xi ;
Liu, Xing ;
Huang, Xin ;
Li, Zhao ;
Hong, Yan ;
Jiang, Yujia ;
Peng, Jian ;
Liu, Shuai ;
Shen, Mengzhe ;
Liu, Chuanyu ;
Li, Quanshui ;
Yuan, Yue ;
Wei, Xiaoyu ;
Zheng, Huiwen ;
Feng, Weimin ;
Wang, Zhifeng ;
Liu, Yang ;
Wang, Zhaohui ;
Yang, Yunzhi ;
Xiang, Haitao ;
Han, Lei ;
Qin, Baoming ;
Guo, Pengcheng ;
Lai, Guangyao ;
Munoz-Canoves, Pura ;
Maxwell, Patrick H. ;
Thiery, Jean Paul ;
Wu, Qing-Feng ;
Zhao, Fuxiang ;
Chen, Bichao ;
Li, Mei ;
Dai, Xi ;
Wang, Shuai ;
Kuang, Haoyan ;
Hui, Junhou ;
Wang, Liqun ;
Fei, Ji-Feng ;
Wang, Ou .
CELL, 2022, 185 (10) :1777-+
[9]   HINet: Half Instance Normalization Network for Image Restoration [J].
Chen, Liangyu ;
Lu, Xin ;
Zhang, Jie ;
Chu, Xiaojie ;
Chen, Chengpeng .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :182-192
[10]   Deep learning of image- and time-domain data enhances the visibility of structures in optoacoustic tomography [J].
Davoudi, Neda ;
Lafci, Berkan ;
Oezbek, Ali ;
Dean-Ben, Xose Luis ;
Razansky, Daniel .
OPTICS LETTERS, 2021, 46 (13) :3029-3032