Dynamics of entanglement in a model consisting of an isolated atom and two Tavis-Cummings atoms with many-photon transitions

被引:0
作者
Bashkirov, E. K. [1 ]
Bagrov, A. R. [1 ]
机构
[1] Samara Univ, Phys Dept, 34 Moskovskoye shosse, Samara 443086, Russia
关键词
sudden death of entanglement; qubits; many-photon transitions; cavity; fidelity; concurrence; thermal field; entanglement; SUDDEN-DEATH; TRIPARTITE ENTANGLEMENT; PAIRWISE ENTANGLEMENT; 3-QUBIT ENTANGLEMENT; QUANTUM; SYSTEM; STATES; SEPARABILITY; EVOLUTION; FIELD;
D O I
10.1007/s11128-025-04772-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a model consisting of an isolated two-level atom and two two-level atoms (qubits) trapped in a lossless cavity and resonantly interacting with a single-mode thermal electromagnetic field through many-photon transitions. This system is of significant interest in the field of cavity quantum electrodynamics and quantum information processing and can be realized in superconducting Josephson circuits in coplanar cavities, Rydberg atoms in cavities, etc. We obtained an exact analytical solution for the evolution operator of the considered model. On its basis, we derived the time-dependent density matrixes for initial W- or GHZ-type atomic states and thermal cavity state. With the help of pairwise concurrence and fidelity, we investigated the dynamics of entanglement in the considered model. We showed that in the nonlinear many-photon processes starting from W-type states, the atomic entanglement is stronger than that in the linear one-photon processes. We also obtained for considered initial states that the phenomenon of sudden death of entanglement (ESD) can be eliminated for large photon multiples. We also showed that for the initial GHZ-state the long-lived entangled states for large values of photon multiples can be generated.
引用
收藏
页数:18
相关论文
共 57 条
[1]   The entanglement of two dipole-dipole coupled atoms in a cavity interacting with a thermal field [J].
Aguiar, LS ;
Munhoz, PP ;
Vidiella-Barranco, A ;
Roversi, JA .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (12) :S769-S771
[2]   Genuinely entangling uncorrelated atoms via Jaynes-Cummings interactions [J].
Ali, Mazhar .
QUANTUM INFORMATION PROCESSING, 2021, 20 (09)
[3]  
Bagrov A.R., 2022, Vestnik of Samara University. Natural Science Series, V28, P95, DOI [10.18287/2541-7525-2022-28-1-2-95-105, DOI 10.18287/2541-7525-2022-28-1-2-95-105]
[4]   Entanglement induced by the two-mode thermal noise [J].
Bashkirov, EK .
LASER PHYSICS LETTERS, 2006, 3 (03) :145-150
[5]   Beyond the Tavis-Cummings model: Revisiting cavity QED with ensembles of quantum emitters [J].
Blaha, Martin ;
Johnson, Aisling ;
Rauschenbeutel, Arno ;
Volz, Jurgen .
PHYSICAL REVIEW A, 2022, 105 (01)
[6]   Subsystem purity as an enforcer of entanglement [J].
Bose, S ;
Fuentes-Guridi, I ;
Knight, PL ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2001, 87 (05) :50401-1
[7]  
Cai JF, 2005, COMMUN THEOR PHYS, V43, P427
[8]   Entanglement dynamics of three atoms under quantum-jump-based feedback control [J].
Chen, Li ;
Wang, Hong-Fu ;
Zhang, Shou .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (03) :475-481
[9]   Dissipative preparation of W states in trapped ion systems [J].
Cole, Daniel C. ;
Wu, Jenny J. ;
Erickson, Stephen D. ;
Hou, Pan-Yu ;
Wilson, Andrew C. ;
Leibfried, Dietrich ;
Reiter, Florentin .
NEW JOURNAL OF PHYSICS, 2021, 23 (07)
[10]   Preparation and measurement of three-qubit entanglement in a superconducting circuit [J].
DiCarlo, L. ;
Reed, M. D. ;
Sun, L. ;
Johnson, B. R. ;
Chow, J. M. ;
Gambetta, J. M. ;
Frunzio, L. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
NATURE, 2010, 467 (7315) :574-578