Regularity for a class of degenerate fully nonlinear nonlocal elliptic equations

被引:0
作者
Fang, Yuzhou [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ,5 ,6 ]
Zhang, Chao [7 ,8 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] AGH Univ Krakow, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Romanian Acad, Sim Stoilow Inst Math, Bucharest 010702, Romania
[5] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[6] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Zhejiang, Peoples R China
[7] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[8] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
INTEGRODIFFERENTIAL EQUATIONS; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; HOLDER CONTINUITY; INTERIOR;
D O I
10.1007/s00526-025-03023-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a wide class of fully nonlinear integro-differential equations that degenerate when the gradient of the solution vanishes. By using compactness and perturbation arguments, we give a complete characterization of the regularity of viscosity solutions according to different diffusion orders. More precisely, when the order of the fractional diffusion is sufficiently close to 2, we obtain H & ouml;lder continuity for the gradient of any viscosity solutions and further derive an improved gradient regularity estimate at the origin. For the order of the fractional diffusion in the interval (1, 2), we prove that there is at least one solution of class Cloc1,alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{1, \alpha }_\textrm{loc}$$\end{document}. Additionally, if the order of the fractional diffusion is in the interval (0, 1], the local H & ouml;lder continuity of solutions is inferred.
引用
收藏
页数:29
相关论文
共 42 条
[1]   Viscosity solutions of nonlinear integro-differential equations [J].
Alvarez, O ;
Tourin, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03) :293-317
[2]  
Amadori A., 2003, Differential Integral Equations, V16, P787, DOI [10.57262/die/1356060597, DOI 10.57262/DIE/1356060597]
[3]   Regularity estimates for fully nonlinear integro-differential equations with nonhomogeneous degeneracy [J].
Andrade, Pedra D. S. ;
dos Prazeres, Disson S. ;
Santos, Makson S. .
NONLINEARITY, 2024, 37 (04)
[4]  
[Anonymous], 1998, J. Math. Systems Estim. Control
[5]  
Araújo DJ, 2023, Arxiv, DOI arXiv:2306.15452
[6]   Geometric gradient estimates for solutions to degenerate elliptic equations [J].
Araujo, Damiao J. ;
Ricarte, Gleydson ;
Teixeira, Eduardo V. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :605-625
[7]   Second derivative Lδ-estimates for a class of singular fully nonlinear elliptic equations [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Oh, Jehan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 249
[8]   C1,α-regularity for a class of degenerate/singular fully non-linear elliptic equations [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Lee, Ki-Ahm ;
Lee, Se-Chan .
INTERFACES AND FREE BOUNDARIES, 2024, 26 (02) :189-215
[9]   Global regularity results for a class of singular/degenerate fully nonlinear elliptic equations [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Lee, Ki-Ahm ;
Lee, Se-Chan .
MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (01)
[10]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585