Legal and ethical considerations for demand-driven data collection and AI-based analysis in flood response

被引:0
作者
Gilga, Carolin [1 ]
Hochwarter, Christoph [2 ]
Knoche, Luisa [3 ]
Schmidt, Sebastian [5 ,8 ]
Ringler, Gudrun [4 ]
Wieland, Marc [6 ]
Resch, Bernd [5 ,7 ,8 ]
Wagner, Ben [9 ,10 ,11 ]
机构
[1] Univ Kassel, Inst Business Law, Kassel, Germany
[2] Inst Empir Social Res IFES, Vienna, Austria
[3] German Fed Agcy Tech Relief THW, Bonn, Germany
[4] Johanniter Osterreich Ausbildung & Forsch gGmbH J, Vienna, Austria
[5] Univ Salzburg, Dept Geoinformat Z GIS, Salzburg, Austria
[6] German Aerosp Ctr DLR, German Remote Sensing Data Ctr DFD, Oberpfaffenhofen, Germany
[7] Harvard Univ, Ctr Geog Anal, Cambridge, MA USA
[8] Univ Austria, Geosocial Artificial Intelligence, IT U Interdisciplinary Transformat, Linz, Austria
[9] Delft Univ Technol, AI Futures Lab Rights & Justice, Delft, Netherlands
[10] Inholland Univ Appl Sci, ARC Res Ctr, The Hague, Netherlands
[11] Univ Austria, Human Rights & Technol, IT U Interdisciplinary Transformat, Linz, Austria
关键词
Disaster response; Artificial intelligence; Ethics; Data privacy;
D O I
10.1016/j.ijdrr.2025.105441
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
During a disaster, the timely provision of customised and relevant data is of utmost importance. In the case of floods, data from remote sensing (satellite-based or airborne) is often used, but in recent years data from social media platforms has also been increasingly utilised. Focusing on these data sources, this study provides an in-depth assessment of requirements by emergency responders. Furthermore, the paper sheds light on the legal and ethical considerations that need to be taken into account during data collection and processing. A particular focus lies on the use of artificial intelligence (AI) for data analysis in disaster response. Topics such as privacy preservation and AI-informed decision making are highlighted throughout the paper. The investigation was carried out based on expert interviews with scientists, an extensive literature review, and workshops with emergency responders.
引用
收藏
页数:13
相关论文
共 78 条
[1]   Fake News Identification on Twitter with Hybrid CNN and RNN Models [J].
Ajao, Oluwaseun ;
Bhowmik, Deepayan ;
Zargari, Shahrzad .
SMSOCIETY'18: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON SOCIAL MEDIA AND SOCIETY, 2018, :226-230
[2]  
AlZu'bi S, 2019, 2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), P494, DOI [10.1109/SNAMS.2019.8931856, 10.1109/snams.2019.8931856]
[3]   Spatio-temporal mining of keywords for social media cross-social crawling of emergency events [J].
Autelitano, Andrea ;
Pernici, Barbara ;
Scalia, Gabriele .
GEOINFORMATICA, 2019, 23 (03) :425-447
[4]   Entity recognition from colloquial text [J].
Babaian, Tamara ;
Xu, Jennifer .
DECISION SUPPORT SYSTEMS, 2024, 179
[5]  
Beauchamp T. L., 1994, PRINCIPLES BIOMEDICA
[6]   Twitter for disaster relief through sentiment analysis for COVID-19 and natural hazard crises [J].
Behl, Shivam ;
Rao, Aman ;
Aggarwal, Sahil ;
Chadha, Sakshi ;
Pannu, H. S. .
INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2021, 55
[7]   Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites [J].
Belward, Alan S. ;
Skoien, Jon O. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 103 :115-128
[8]   Current European flood-rich period exceptional compared with past 500 years [J].
Bloeschl, Guenter ;
Kiss, Andrea ;
Viglione, Alberto ;
Barriendos, Mariano ;
Boehm, Oliver ;
Brazdil, Rudolf ;
Coeur, Denis ;
Demaree, Gaston ;
Llasat, Maria Carmen ;
Macdonald, Neil ;
Retso, Dag ;
Roald, Lars ;
Schmocker-Fackel, Petra ;
Amorim, Ines ;
Belinova, Monika ;
Benito, Gerardo ;
Bertolin, Chiara ;
Camuffo, Dario ;
Cornel, Daniel ;
Doktor, Radoslaw ;
Elleder, Libor ;
Enzi, Silvia ;
Garcia, Joao Carlos ;
Glaser, Ruediger ;
Hall, Julia ;
Haslinger, Klaus ;
Hofstaetter, Michael ;
Komma, Juergen ;
Limanowka, Danuta ;
Lun, David ;
Panin, Andrei ;
Parajka, Juraj ;
Petric, Hrvoje ;
Rodrigo, Fernando S. ;
Rohr, Christian ;
Schoenbein, Johannes ;
Schulte, Lothar ;
Silva, Luis Pedro ;
Toonen, Willem H. J. ;
Valent, Peter ;
Waser, Juergen ;
Wetter, Oliver .
NATURE, 2020, 583 (7817) :560-+
[9]   Drowning in the Information Flood: Machine-Learning-Based Relevance Classification of Flood-Related Tweets for Disaster Management [J].
Blomeier, Eike ;
Schmidt, Sebastian ;
Resch, Bernd .
INFORMATION, 2024, 15 (03)
[10]  
Boutsikaris L., 2024, IEEE Transactions on Artificial Intelligence, P1, DOI [10.1109/TAI.2024.3515935, DOI 10.1109/TAI.2024.3515935]