Quantum error correction of qudits beyond break-even

被引:3
作者
Brock, Benjamin L. [1 ,2 ,3 ]
Singh, Shraddha [1 ,2 ,3 ]
Eickbusch, Alec [1 ,2 ,3 ,4 ]
Sivak, Volodymyr V. [1 ,2 ,3 ,4 ]
Ding, Andy Z. [1 ,2 ,3 ]
Frunzio, Luigi [1 ,2 ,3 ]
Girvin, Steven M. [1 ,2 ,3 ]
Devoret, Michel H. [1 ,2 ,3 ,5 ,6 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[2] Yale Univ, Yale Quantum Inst, New Haven, CT 06520 USA
[3] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[4] Google Quantum AI, Santa Barbara, CA USA
[5] UC Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[6] UC Santa Barbara, Google Quantum, Santa Barbara, CA 93106 USA
关键词
STATES; QUBIT;
D O I
10.1038/s41586-025-08899-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hilbert space dimension is a key resource for quantum information processing(1,2). Not only is a large overall Hilbert space an essential requirement for quantum error correction, but a large local Hilbert space can also be advantageous for realizing gates and algorithms more efficiently(3, 4, 5, 6-7). As a result, there has been considerable experimental effort in recent years to develop quantum computing platforms using qudits (d-dimensional quantum systems with d > 2) as the fundamental unit of quantum information(8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18-19). Just as with qubits, quantum error correction of these qudits will be necessary in the long run, but so far, error correction of logical qudits has not been demonstrated experimentally. Here we report the experimental realization of an error-corrected logical qutrit (d = 3) and ququart (d = 4), which was achieved with the Gottesman-Kitaev-Preskill bosonic code(20). Using a reinforcement learning agent(21,22), we optimized the Gottesman-Kitaev-Preskill qutrit (ququart) as a ternary (quaternary) quantum memory and achieved beyond break-even error correction with a gain of 1.82 +/- 0.03 (1.87 +/- 0.03). This work represents a novel way of leveraging the large Hilbert space of a harmonic oscillator to realize hardware-efficient quantum error correction.
引用
收藏
页码:612 / 618
页数:9
相关论文
共 59 条
[1]   Quantum error correction below the surface code threshold [J].
Acharya, Rajeev ;
Abanin, Dmitry A. ;
Aghababaie-Beni, Laleh ;
Aleiner, Igor ;
Andersen, Trond I. ;
Ansmann, Markus ;
Arute, Frank ;
Arya, Kunal ;
Asfaw, Abraham ;
Astrakhantsev, Nikita ;
Atalaya, Juan ;
Babbush, Ryan ;
Bacon, Dave ;
Ballard, Brian ;
Bardin, Joseph C. ;
Bausch, Johannes ;
Bengtsson, Andreas ;
Bilmes, Alexander ;
Blackwell, Sam ;
Boixo, Sergio ;
Bortoli, Gina ;
Bourassa, Alexandre ;
Bovaird, Jenna ;
Brill, Leon ;
Broughton, Michael ;
Browne, David A. ;
Buchea, Brett ;
Buckley, Bob B. ;
Buell, David A. ;
Burger, Tim ;
Burkett, Brian ;
Bushnell, Nicholas ;
Cabrera, Anthony ;
Campero, Juan ;
Chang, Hung-Shen ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Chik, Desmond ;
Chou, Charina ;
Claes, Jahan ;
Cleland, Agnetta Y. ;
Cogan, Josh ;
Collins, Roberto ;
Conner, Paul ;
Courtney, William ;
Crook, Alexander L. ;
Curtin, Ben ;
Das, Sayan ;
Davies, Alex .
NATURE, 2024, :920-926
[2]   Hyperfine Spectroscopy and Fast, All-Optical Arbitrary State Initialization and Readout of a Single, Ten-Level 73Ge Vacancy Nuclear Spin Qudit in Diamond [J].
Adambukulam, C. ;
Johnson, B. C. ;
Morello, A. ;
Laucht, A. .
PHYSICAL REVIEW LETTERS, 2024, 132 (06)
[3]   Climbing mount scalable: Physical resource requirements for a scalable quantum computer [J].
Blume-Kohout, R ;
Caves, CM ;
Deutsch, IH .
FOUNDATIONS OF PHYSICS, 2002, 32 (11) :1641-1670
[4]   Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures [J].
Bocharov, Alex ;
Roetteler, Martin ;
Svore, Krysta M. .
PHYSICAL REVIEW A, 2017, 96 (01)
[5]  
Brock B., 2025, **DATA OBJECT**, DOI 10.5281/zenodo.15009817
[6]   Quantum stabilizer codes embedding qubits into qudits [J].
Cafaro, Carlo ;
Maiolini, Federico ;
Mancini, Stefano .
PHYSICAL REVIEW A, 2012, 86 (02)
[7]   Quantum error correction of a qubit encoded in grid states of an oscillator [J].
Campagne-Ibarcq, P. ;
Eickbusch, A. ;
Touzard, S. ;
Zalys-Geller, E. ;
Frattini, N. E. ;
Sivak, V. V. ;
Reinhold, P. ;
Puri, S. ;
Shankar, S. ;
Schoelkopf, R. J. ;
Frunzio, L. ;
Mirrahimi, M. ;
Devoret, M. H. .
NATURE, 2020, 584 (7821) :368-+
[8]   Enhanced Fault-Tolerant Quantum Computing in d-Level Systems [J].
Campbell, Earl T. .
PHYSICAL REVIEW LETTERS, 2014, 113 (23)
[9]   Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes [J].
Campbell, Earl T. ;
Anwar, Hussain ;
Browne, Dan E. .
PHYSICAL REVIEW X, 2012, 2 (04)
[10]   Quantum control of the hyperfine spin of a Cs atom ensemble [J].
Chaudhury, Souma ;
Merkel, Seth ;
Herr, Tobias ;
Silberfarb, Andrew ;
Deutsch, Ivan H. ;
Jessen, Poul S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)