Predicting the progression of MCI and Alzheimer's disease on structural brain integrity and other features with machine learning

被引:0
作者
Mieling, Marthe [1 ]
Yousuf, Mushfa [1 ]
Bunzeck, Nico [1 ,2 ]
机构
[1] Univ Lubeck, Dept Psychol, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[2] Univ Lubeck, Ctr Brain Behav & Metab CBBM, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Alzheimer's disease; Magnetic resonance imaging; Structural degeneration; Machine learning; Classification; MILD COGNITIVE IMPAIRMENT; GRAY-MATTER LOSS; VOXEL-BASED MORPHOMETRY; HUMAN CEREBRAL-CORTEX; ENTORHINAL CORTEX; CORTICAL THICKNESS; EPISODIC MEMORY; HEALTHY CONTROLS; COMPOSITE SCORE; INSULAR CORTEX;
D O I
10.1007/s11357-025-01626-5
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Machine learning (ML) on structural MRI data shows high potential for classifying Alzheimer's disease (AD) progression, but the specific contribution of brain regions, demographics, and proteinopathy remains unclear. Using Alzheimer's Disease Neuroimaging Initiative (ADNI) data, we applied an extreme gradient-boosting algorithm and SHAP (SHapley Additive exPlanations) values to classify cognitively normal (CN) older adults, those with mild cognitive impairment (MCI) and AD dementia patients. Features included structural MRI, CSF status, demographics, and genetic data. Analyses comprised one cross-sectional multi-class classification (CN vs. MCI vs. AD dementia, n = 568) and two longitudinal binary-class classifications (CN-to-MCI converters vs. CN stable, n = 92; MCI-to-AD converters vs. MCI stable, n = 378). All classifications achieved 70-77% accuracy and 61-83% precision. Key features were CSF status, hippocampal volume, entorhinal thickness, and amygdala volume, with a clear dissociation: hippocampal properties contributed to the conversion to MCI, while the entorhinal cortex characterized the conversion to AD dementia. The findings highlight explainable, trajectory-specific insights into AD progression.
引用
收藏
页数:25
相关论文
共 115 条
[1]   Alzheimer's Disease Neuroimaging Initiative 2 Clinical Core: Progress and plans [J].
Aisen, Paul S. ;
Petersen, Ronald C. ;
Donohue, Michael ;
Weiner, Michael W. .
ALZHEIMERS & DEMENTIA, 2015, 11 (07) :734-739
[2]   Clinical core of the Alzheimer's disease neuroimaging initiative: Progress and plans [J].
Aisen, Paul S. ;
Petersen, Ronald C. ;
Donohue, Michael C. ;
Gamst, Anthony ;
Raman, Rema ;
Thomas, Ronald G. ;
Walter, Sarah ;
Trojanowski, John Q. ;
Shaw, Leslie M. ;
Beckett, Laurel A. ;
Jack, Clifford R., Jr. ;
Jagust, William ;
Toga, Arthur W. ;
Saykin, Andrew J. ;
Morris, John C. ;
Green, Robert C. ;
Weiner, Michael W. .
ALZHEIMERS & DEMENTIA, 2010, 6 (03) :239-246
[3]   Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years [J].
Albert, Marilyn ;
Zhu, Yuxin ;
Moghekar, Abhay ;
Mori, Susumu ;
Miller, Michael I. ;
Soldan, Anja ;
Pettigrew, Corinne ;
Selnes, Ola ;
Li, Shanshan ;
Wang, Mei-Cheng .
BRAIN, 2018, 141 :877-887
[4]   2018 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :367-425
[5]   Grey matter changes on brain MRI in subjective cognitive decline: a systematic review [J].
Arrondo, Pablo ;
Elia-Zudaire, Oscar ;
Marti-Andres, Gloria ;
Fernandez-Seara, Maria A. ;
Riverol, Mario .
ALZHEIMERS RESEARCH & THERAPY, 2022, 14 (01)
[6]   Circuitry and functional aspects of the insular lobe in primates including humans [J].
Augustine, JR .
BRAIN RESEARCH REVIEWS, 1996, 22 (03) :229-244
[7]   In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease [J].
Baron, JC ;
Chételat, G ;
Desgranges, B ;
Perchey, G ;
Landeau, B ;
de la Sayette, V ;
Eustache, F .
NEUROIMAGE, 2001, 14 (02) :298-309
[8]   Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks [J].
Basaia, Silvia ;
Agosta, Federica ;
Wagner, Luca ;
Canu, Elisa ;
Magnani, Giuseppe ;
Santangelo, Roberto ;
Filippi, Massimo .
NEUROIMAGE-CLINICAL, 2019, 21
[9]   The Locus Coeruleus in Aging and Alzheimer's Disease: A Postmortem and Brain Imaging Review [J].
Beardmore, Rebecca ;
Hou, Ruihua ;
Darekar, Angela ;
Holmes, Clive ;
Boche, Delphine .
JOURNAL OF ALZHEIMERS DISEASE, 2021, 83 (01) :5-22
[10]   Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm [J].
Beheshti, Iman ;
Demirel, Hasan ;
Matsuda, Hiroshi .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 83 :109-119