In Flight Performance of the MAGIC Magnetoresistive Magnetometer on the RadCube CubeSat

被引:0
作者
Eastwood, J. P. [1 ]
Brown, P. [1 ]
Oddy, T. [1 ]
Archer, M. O. [1 ]
Baughen, R. [1 ]
Ferreira, I. Belo [1 ,2 ]
Torres, C. Cobo [1 ]
Cupido, E. [1 ]
Eshbaugh, H. [1 ,3 ]
Palla, C. [1 ,4 ]
Vitkova, A. [1 ,5 ]
Waters, C. L. [1 ]
Whiteside, B. [1 ,6 ]
Zabori, B. [7 ]
Hirn, A. [7 ]
Nolbert, D. [8 ]
Milankovich, D. [9 ]
Kovacs, Z. G. [9 ]
Santin, G. [10 ]
Walker, R. [10 ]
机构
[1] Imperial Coll London, Dept Phys, London, England
[2] Univ Lisbon, CENTRA, Inst Super Tecn, Lisbon, Portugal
[3] Univ Oxford, Clarendon Lab, AOPP, Oxford, England
[4] MDA Space, Didcot, England
[5] CALTECH, Jet Prop Lab, Pasadena, CA USA
[6] Univ Coll London, MSSL, Holmbury, England
[7] HUN REN Ctr Energy Res, EK, Budapest, Hungary
[8] Astronika, Warsaw, Poland
[9] C3S LLC, Budapest, Hungary
[10] ESA ESTEC, Directorate Technol Engn & Qual, Noordwijk, Netherlands
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
RadCube; Magnetometer; Anisotropic magnetoresistive sensing; CubeSat; Space weather; Geomagnetic observations; FIELD-ALIGNED CURRENTS; BIRKELAND CURRENTS; MAGNETIC SENSORS; MAGNETOSPHERE;
D O I
10.1007/s11214-025-01170-w
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In studying space physics, planetary science, and space weather, space-based in situ measurements of the magnetic field are fundamental to understanding underlying physical processes, as well as providing context for other observations. Whilst in many cases instrument design is not severely constrained by the available resource envelope, there are many applications, particularly when using new generations of spacecraft platforms such as CubeSats, that require very low resource sensors. In this context we review the design, development, construction, and flight of the highly miniaturised MAGIC (MAGnetometer from Imperial College) instrument on the RadCube Technology Demonstration CubeSat. MAGIC consists of a boom-mounted (outboard) Anisotropic Magneto-Resistive (AMR) vector sensor connected by harness to a single electronics card inside RadCube. A second inboard AMR vector sensor is mounted on the electronics card. RadCube launched on 17 August 2021 to a sun-synchronous low-Earth polar orbit, with the main mission lasting until April 2022. Routine operations were subsequently extended to the end of 2022, with further special operations in 2023 and 2024 before re-entry on 20 August 2024. Here we review RadCube observations made over more than two years in orbit. Key results from MAGIC on RadCube include meeting ESA space weather magnetic field measurement requirements with both the outboard and inboard sensor, as well as detection of field aligned current signatures at high latitude.
引用
收藏
页数:40
相关论文
共 49 条
[1]   Space-based magnetometers [J].
Acuña, MH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (11) :3717-3736
[2]   Development of large-scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment [J].
Anderson, B. J. ;
Korth, H. ;
Waters, C. L. ;
Green, D. L. ;
Merkin, V. G. ;
Barnes, R. J. ;
Dyrud, L. P. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (09) :3017-3025
[3]   Storm time dawn-dusk asymmetry of the large-scale Birkeland currents [J].
Anderson, BJ ;
Ohtani, SI ;
Korth, H ;
Ukhorskiy, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A12)
[4]   Birkeland current system key parameters derived from Iridium observations: Method and initial validation results [J].
Anderson, BJ ;
Takahashi, K ;
Kamei, T ;
Waters, CL ;
Toth, BA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A6)
[5]   Sensing global Birkeland currents with Iridium® engineering magnetometer data [J].
Anderson, BJ ;
Takahashi, K ;
Toth, BA .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (24) :4045-4048
[6]   Iridium Communications Satellite Constellation Data for Study of Earth's Magnetic Field [J].
Anderson, Brian J. ;
Angappan, Regupathi ;
Barik, Ankit ;
Vines, Sarah K. ;
Stanley, Sabine ;
Bernasconi, Pietro N. ;
Korth, Haje ;
Barnes, Robin J. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2021, 22 (08)
[7]   The ELFIN Mission [J].
Angelopoulos, V ;
Tsai, E. ;
Bingley, L. ;
Shaffer, C. ;
Turner, D. L. ;
Runov, A. ;
Li, W. ;
Liu, J. ;
Artemyev, A., V ;
Zhang, X-J ;
Strangeway, R. J. ;
Wirz, R. E. ;
Shprits, Y. Y. ;
Sergeev, V. A. ;
Caron, R. P. ;
Chung, M. ;
Cruce, P. ;
Greer, W. ;
Grimes, E. ;
Hector, K. ;
Lawson, M. J. ;
Leneman, D. ;
Masongsong, E., V ;
Russell, C. L. ;
Wilkins, C. ;
Hinkley, D. ;
Blake, J. B. ;
Adair, N. ;
Allen, M. ;
Anderson, M. ;
Arreola-Zamora, M. ;
Artinger, J. ;
Asher, J. ;
Branchevsky, D. ;
Capitelli, M. R. ;
Castro, R. ;
Chao, G. ;
Chung, N. ;
Cliffe, M. ;
Colton, K. ;
Costello, C. ;
Depe, D. ;
Domae, B. W. ;
Eldin, S. ;
Fitzgibbon, L. ;
Flemming, A. ;
Fox, I ;
Frederick, D. M. ;
Gilbert, A. ;
Gildemeister, A. .
SPACE SCIENCE REVIEWS, 2020, 216 (05)
[8]  
[Anonymous], **DATA OBJECT**, DOI 10.14469/hpc/14612
[9]   The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer [J].
Archer, M. O. ;
Horbury, T. S. ;
Brown, P. ;
Eastwood, J. P. ;
Oddy, T. M. ;
Whiteside, B. J. ;
Sample, J. G. .
ANNALES GEOPHYSICAE, 2015, 33 (06) :725-735
[10]   Planetary Magnetic Field Measurements: Missions and Instrumentation [J].
Balogh, Andre .
SPACE SCIENCE REVIEWS, 2010, 152 (1-4) :23-97